Menu Close

lim-x-1-1-2-2-1-1-3-2-1-1-n-2-




Question Number 210044 by maths_plus last updated on 29/Jul/24
lim_(x→∞)  (1−(1/2^2 ))(1−(1/3^2 ))...(1−(1/n^2 ))=???
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }\right)…\left(\mathrm{1}−\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)=??? \\ $$
Commented by Frix last updated on 29/Jul/24
Π_(k=2) ^n  (1−(1/k^2 )) =((n+1)/(2n)) ⇒ Answer is (1/2)
$$\underset{{k}=\mathrm{2}} {\overset{{n}} {\prod}}\:\left(\mathrm{1}−\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\right)\:=\frac{{n}+\mathrm{1}}{\mathrm{2}{n}}\:\Rightarrow\:\mathrm{Answer}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by Frix last updated on 29/Jul/24
!!!
$$!!! \\ $$
Commented by klipto last updated on 29/Jul/24
Answered by depressiveshrek last updated on 29/Jul/24
lim_(n→∞)  ((2^2 −1)/2^2 )∙((3^2 −1)/3^2 )∙...∙(((n−1)^2 −1)/((n−1)^2 ))∙((n^2 −1)/n^2 )  =lim_(n→∞)  ((1∙3)/2^2 )∙((2∙4)/3^2 )∙((3∙5)/4^2 )∙...∙(((n−2)n)/((n−1)^2 ))∙(((n−1)(n+1))/n^2 )  =lim_(n→∞)  ((n+1)/(2n))  =(1/2)
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{2}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\centerdot\frac{\mathrm{3}^{\mathrm{2}} −\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }\centerdot…\centerdot\frac{\left({n}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}}{\left({n}−\mathrm{1}\right)^{\mathrm{2}} }\centerdot\frac{{n}^{\mathrm{2}} −\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}\centerdot\cancel{\mathrm{3}}}{\mathrm{2}^{\cancel{\mathrm{2}}} }\centerdot\frac{\cancel{\mathrm{2}}\centerdot\cancel{\mathrm{4}}}{\cancel{\mathrm{3}^{\mathrm{2}} }}\centerdot\frac{\cancel{\mathrm{3}}\centerdot\cancel{\mathrm{5}}}{\cancel{\mathrm{4}^{\mathrm{2}} }}\centerdot…\centerdot\frac{\cancel{\left({n}−\mathrm{2}\right){n}}}{\cancel{\left({n}−\mathrm{1}\right)^{\mathrm{2}} }}\centerdot\frac{\cancel{\left({n}−\mathrm{1}\right)}\left({n}+\mathrm{1}\right)}{{n}^{\cancel{\mathrm{2}}} } \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{{n}+\mathrm{1}}{\mathrm{2}{n}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *