Menu Close

Question-210034




Question Number 210034 by peter frank last updated on 29/Jul/24
Commented by peter frank last updated on 29/Jul/24
solve for x
$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x} \\ $$
Commented by Frix last updated on 29/Jul/24
(log 5)^(log x)  or log (5^(log x) )?  log=ln or log=log_(10) ?
$$\left(\mathrm{log}\:\mathrm{5}\right)^{\mathrm{log}\:{x}} \:\mathrm{or}\:\mathrm{log}\:\left(\mathrm{5}^{\mathrm{log}\:{x}} \right)? \\ $$$$\mathrm{log}=\mathrm{ln}\:\mathrm{or}\:\mathrm{log}=\mathrm{log}_{\mathrm{10}} ? \\ $$
Commented by peter frank last updated on 29/Jul/24
log(5^(logx) )
$$\mathrm{log}\left(\mathrm{5}^{\mathrm{logx}} \right) \\ $$
Commented by Frix last updated on 29/Jul/24
log (5^(log x) ) =log x ×log 5  For the base b:  log_b  x (4/(log_b  5))  x=b^(4/(log_b  5))   b=10 ⇒ x=10^(4/(log_(10)  5)) ≈528087.919  b=e ⇒ x=e^(4/(ln 5)) ≈12.0051983
$$\mathrm{log}\:\left(\mathrm{5}^{\mathrm{log}\:{x}} \right)\:=\mathrm{log}\:{x}\:×\mathrm{log}\:\mathrm{5} \\ $$$$\mathrm{For}\:\mathrm{the}\:\mathrm{base}\:{b}: \\ $$$$\mathrm{log}_{{b}} \:{x}\:\frac{\mathrm{4}}{\mathrm{log}_{{b}} \:\mathrm{5}} \\ $$$${x}={b}^{\frac{\mathrm{4}}{\mathrm{log}_{{b}} \:\mathrm{5}}} \\ $$$${b}=\mathrm{10}\:\Rightarrow\:{x}=\mathrm{10}^{\frac{\mathrm{4}}{\mathrm{log}_{\mathrm{10}} \:\mathrm{5}}} \approx\mathrm{528087}.\mathrm{919} \\ $$$${b}=\mathrm{e}\:\Rightarrow\:{x}=\mathrm{e}^{\frac{\mathrm{4}}{\mathrm{ln}\:\mathrm{5}}} \approx\mathrm{12}.\mathrm{0051983} \\ $$
Answered by Spillover last updated on 29/Jul/24

Leave a Reply

Your email address will not be published. Required fields are marked *