Question Number 210091 by mr W last updated on 30/Jul/24
$${find}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }\right)=? \\ $$
Commented by AlagaIbile last updated on 30/Jul/24
$$\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left[\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}{n}+\mathrm{1}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}{n}−\mathrm{1}\right)\right] \\ $$$$\:\:{Telescopic}\:{sum} \\ $$$$\:=\:\mathrm{tan}^{−\mathrm{1}} \:\mathrm{1} \\ $$$$\:=\:\frac{\pi}{\mathrm{4}} \\ $$
Commented by mr W last updated on 30/Jul/24
$${thanks}! \\ $$
Answered by mr W last updated on 30/Jul/24
$$\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }=\frac{\mathrm{2}{n}+\mathrm{1}−\left(\mathrm{2}{n}−\mathrm{1}\right)}{\mathrm{1}+\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}−\mathrm{1}\right)} \\ $$$${say}\:\mathrm{tan}\:\alpha=\mathrm{2}{n}+\mathrm{1},\:\mathrm{tan}\:\beta=\mathrm{2}{n}−\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }=\frac{\mathrm{tan}\:\alpha−\mathrm{tan}\:\beta}{\mathrm{1}+\mathrm{tan}\:\alpha\:\mathrm{tan}\:\beta}=\mathrm{tan}\:\left(\alpha−\beta\right) \\ $$$$\Rightarrow\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }\right)=\alpha−\beta=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}{n}+\mathrm{1}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}{n}−\mathrm{1}\right) \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }\right) \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}{k}^{\mathrm{2}} }\right) \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left[\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}{k}+\mathrm{1}\right)−\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}{k}−\mathrm{1}\right)\right] \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left[\left\{\mathrm{tan}^{−\mathrm{1}} \mathrm{3}+\mathrm{tan}^{−\mathrm{1}} \mathrm{5}+…+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}{n}+\mathrm{1}\right)\right\}−\left\{\mathrm{tan}^{−\mathrm{1}} \mathrm{1}+\mathrm{tan}^{−\mathrm{1}} \mathrm{3}+…+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}{n}−\mathrm{1}\right)\right\}\right] \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left[\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}{n}+\mathrm{1}\right)−\mathrm{tan}^{−\mathrm{1}} \mathrm{1}\right] \\ $$$$=\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{4}} \\ $$$$=\frac{\pi}{\mathrm{4}}\:\checkmark \\ $$