Menu Close

Question-210090




Question Number 210090 by Tawa11 last updated on 30/Jul/24
Commented by mr W last updated on 30/Jul/24
are there 3 times letter p in your   picture?
$${are}\:{there}\:\mathrm{3}\:{times}\:{letter}\:{p}\:{in}\:{your}\: \\ $$$${picture}? \\ $$
Commented by Tawa11 last updated on 30/Jul/24
two times sir.
$$\mathrm{two}\:\mathrm{times}\:\mathrm{sir}. \\ $$
Commented by mr W last updated on 30/Jul/24
2 times p, a 5 and a 4?  then the question is not so  interesting as with 3 times p.
$$\mathrm{2}\:{times}\:{p},\:{a}\:\mathrm{5}\:{and}\:{a}\:\mathrm{4}? \\ $$$${then}\:{the}\:{question}\:{is}\:{not}\:{so} \\ $$$${interesting}\:{as}\:{with}\:\mathrm{3}\:{times}\:{p}. \\ $$
Commented by Tawa11 last updated on 30/Jul/24
Sir, please do it as 2 times and 3 times p.  The question did not give any information.  only the diagram and find p
$$\mathrm{Sir},\:\mathrm{please}\:\mathrm{do}\:\mathrm{it}\:\mathrm{as}\:\mathrm{2}\:\mathrm{times}\:\mathrm{and}\:\mathrm{3}\:\mathrm{times}\:\mathrm{p}. \\ $$$$\mathrm{The}\:\mathrm{question}\:\mathrm{did}\:\mathrm{not}\:\mathrm{give}\:\mathrm{any}\:\mathrm{information}. \\ $$$$\mathrm{only}\:\mathrm{the}\:\mathrm{diagram}\:\mathrm{and}\:\mathrm{find}\:\mathrm{p} \\ $$
Commented by mr W last updated on 30/Jul/24
Commented by mr W last updated on 30/Jul/24
4×9=a(a+2b)  p^2 −b^2 =9^2 −(a+b)^2   ⇒9^2 −p^2 =a(a+2b)=4×9  ⇒p^2 =9^2 −4×9 ⇒p=3(√5)
$$\mathrm{4}×\mathrm{9}={a}\left({a}+\mathrm{2}{b}\right) \\ $$$${p}^{\mathrm{2}} −{b}^{\mathrm{2}} =\mathrm{9}^{\mathrm{2}} −\left({a}+{b}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{9}^{\mathrm{2}} −{p}^{\mathrm{2}} ={a}\left({a}+\mathrm{2}{b}\right)=\mathrm{4}×\mathrm{9} \\ $$$$\Rightarrow{p}^{\mathrm{2}} =\mathrm{9}^{\mathrm{2}} −\mathrm{4}×\mathrm{9}\:\Rightarrow{p}=\mathrm{3}\sqrt{\mathrm{5}} \\ $$
Commented by mr W last updated on 30/Jul/24
Commented by mr W last updated on 30/Jul/24
p^2 −b^2 =(p+5)^2 −(a+b)^2   ⇒a(a+2b)=10p+25  p(p+5)=a(a+2b)=10p+25  ⇒p^2 −5p−25=0  ⇒p=((5(1+(√5)))/2)=5ϕ   (ϕ=golden ratio)
$${p}^{\mathrm{2}} −{b}^{\mathrm{2}} =\left({p}+\mathrm{5}\right)^{\mathrm{2}} −\left({a}+{b}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{a}\left({a}+\mathrm{2}{b}\right)=\mathrm{10}{p}+\mathrm{25} \\ $$$${p}\left({p}+\mathrm{5}\right)={a}\left({a}+\mathrm{2}{b}\right)=\mathrm{10}{p}+\mathrm{25} \\ $$$$\Rightarrow{p}^{\mathrm{2}} −\mathrm{5}{p}−\mathrm{25}=\mathrm{0} \\ $$$$\Rightarrow{p}=\frac{\mathrm{5}\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)}{\mathrm{2}}=\mathrm{5}\varphi\:\:\:\left(\varphi={golden}\:{ratio}\right) \\ $$
Commented by Tawa11 last updated on 30/Jul/24
Thanks so much sir.  I really appreciate.
$$\mathrm{Thanks}\:\mathrm{so}\:\mathrm{much}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *