Question Number 210122 by SonGoku last updated on 31/Jul/24
Commented by SonGoku last updated on 31/Jul/24
$$\mathrm{How}\:\mathrm{do}\:\mathrm{I}\:\mathrm{find}\:\mathrm{the}\:\mathrm{painted}\:\mathrm{area}? \\ $$
Answered by mr W last updated on 01/Aug/24
Commented by mr W last updated on 31/Jul/24
$${z}_{\mathrm{0}} ={area}\:{of}\:{big}\:{triangle} \\ $$$${z}_{\mathrm{1}} ={area}\:{of}\:{circle} \\ $$$${z}_{\mathrm{2}} ={z}_{\mathrm{0}} −{z}_{\mathrm{1}} ={shaded}\:{area} \\ $$
Commented by mr W last updated on 01/Aug/24
$${excircle}\:{of}\:\Delta{DEC}\:{is}\:{the}\:{incircle}\:{of} \\ $$$$\Delta{ABC}. \\ $$$${s}=\frac{\mathrm{3}+\mathrm{4}+{b}}{\mathrm{2}}=\frac{\mathrm{7}+{b}}{\mathrm{2}} \\ $$$${R}=\sqrt{\frac{{s}\left({s}−\mathrm{3}\right)\left({s}−\mathrm{4}\right)}{{s}−{b}}} \\ $$$${t}=\frac{\mathrm{3}+\mathrm{20}+\mathrm{26}+{a}+\mathrm{4}}{\mathrm{2}}=\frac{\mathrm{53}+{a}}{\mathrm{2}} \\ $$$${R}=\sqrt{\frac{\left({t}−\mathrm{23}\right)\left({t}−\mathrm{26}\right)\left({t}−\mathrm{4}−{a}\right)}{{t}}} \\ $$$$\frac{\left({t}−\mathrm{23}\right)\left({t}−\mathrm{26}\right)\left({t}−\mathrm{4}−{a}\right)}{{t}}=\frac{{s}\left({s}−\mathrm{3}\right)\left({s}−\mathrm{4}\right)}{{s}−{b}} \\ $$$$\Rightarrow\frac{\left(\mathrm{7}+{a}\right)\left(\mathrm{1}+{a}\right)\left(\mathrm{45}−{a}\right)}{\mathrm{45}+{a}}=\frac{\left(\mathrm{7}+{b}\right)\left(\mathrm{1}+{b}\right)\left({b}−\mathrm{1}\right)}{\mathrm{7}−{b}}\:\:\:…\left({i}\right) \\ $$$$\mathrm{cos}\:{C}=\frac{\mathrm{3}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}×\mathrm{3}×\mathrm{4}}=\frac{\mathrm{23}^{\mathrm{2}} +\left(\mathrm{4}+{a}\right)^{\mathrm{2}} −\mathrm{26}^{\mathrm{2}} }{\mathrm{2}×\mathrm{23}×\left(\mathrm{4}+{a}\right)} \\ $$$$\frac{\mathrm{25}−{b}^{\mathrm{2}} }{\mathrm{3}×\mathrm{4}}=\frac{\left(\mathrm{4}+{a}\right)^{\mathrm{2}} −\mathrm{147}}{\mathrm{23}×\left(\mathrm{4}+{a}\right)} \\ $$$$\Rightarrow{b}=\sqrt{\mathrm{25}−\frac{\mathrm{12}}{\mathrm{23}}\left(\mathrm{4}+{a}−\frac{\mathrm{147}}{\mathrm{4}+{a}}\right)}\:\:\:…\left({ii}\right) \\ $$$${from}\:\left({i}\right)\:{and}\:\left({ii}\right)\:{we}\:{get}: \\ $$$${a}\approx\mathrm{10}.\mathrm{744363} \\ $$$${b}\approx\mathrm{4}.\mathrm{7444} \\ $$$${R}\approx\mathrm{5}.\mathrm{2913} \\ $$$${shaded}\:{area}\:={tR}−\pi{R}^{\mathrm{2}} \\ $$$$\:\:\:\:=\frac{\left(\mathrm{53}+{a}\right){R}}{\mathrm{2}}−\pi{R}^{\mathrm{2}} \approx\mathrm{80}.\mathrm{6875}\:{m}^{\mathrm{2}} \:\checkmark \\ $$
Commented by mr W last updated on 31/Jul/24
Commented by SonGoku last updated on 01/Aug/24
$$\mathrm{I}\:\mathrm{did}\:\mathrm{as}\:\mathrm{follows}: \\ $$$$\mathrm{I}\:\mathrm{found}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{to}\:\mathrm{be}\:\mathrm{291}.\mathrm{8}\:\left(\mathrm{Approximately}\right)\: \\ $$$$\mathrm{I}\:\mathrm{found}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{to}\:\mathrm{be}\:\mathrm{7}.\mathrm{32}\:\left(\mathrm{Approximately}\right) \\ $$$$\mathrm{I}\:\mathrm{found}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{to}\:\mathrm{be}\:\mathrm{168}.\mathrm{33}\:\left(\mathrm{Approximately}\right) \\ $$$$\mathrm{Therefore},\:\mathrm{the}\:\mathrm{painteda}\:\mathrm{area}\:\mathrm{is}\: \\ $$$$\mathrm{Ap}\:\approx\:\mathrm{291}.\mathrm{8}\:−\:\mathrm{168}.\mathrm{33} \\ $$$$\mathrm{Ap}\:\approx\:\mathrm{123}.\mathrm{47m}^{\mathrm{2}} \\ $$
Commented by mr W last updated on 01/Aug/24
$${what}\:{are}\:{the}\:{side}\:{lengthes}\:{you}\:{got} \\ $$$${for}\:{the}\:{triangle}? \\ $$$${try}\:{to}\:{draw}\:{the}\:{triangle}\:{and}\:{the}\:{circle}, \\ $$$${then}\:{you}'{ll}\:{see}\:{that}\:{you}\:{are}\:{wrong}. \\ $$$${the}\:{figure}\:{which}\:{i}\:{showed}\:{above} \\ $$$${is}\:{the}\:{only}\:{one}\:{correct}\:{solution}. \\ $$
Commented by SonGoku last updated on 01/Aug/24
$$\mathrm{I}\:\mathrm{applied}\:\mathrm{triangle}\:\mathrm{similarity}: \\ $$$$\mathrm{3}:\mathrm{23}\:=\:\mathrm{x}:\mathrm{26}\: \\ $$$$\mathrm{4}:\mathrm{y}\:=\:\mathrm{4}:\left(\mathrm{4}+\mathrm{y}\right) \\ $$$$\mathrm{Then}\:\mathrm{I}\:\mathrm{used}\:\mathrm{the}\:\mathrm{Herons}\:\mathrm{formula}\:\mathrm{to}\:\mathrm{determine}\:\mathrm{the}\: \\ $$$$\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{and}\:\mathrm{then}\:\mathrm{I}\:\mathrm{determined}\:\mathrm{the}\: \\ $$$$\mathrm{radiusof}\:\mathrm{the}\:\mathrm{circle}: \\ $$$$\frac{\mathrm{23R}}{\mathrm{2}}\:+\:\frac{\mathrm{30}.\mathrm{67R}}{\mathrm{2}}\:+\:\frac{\mathrm{26R}}{\mathrm{2}}\:=\:\mathrm{291}.\mathrm{8} \\ $$
Commented by mr W last updated on 01/Aug/24
$${this}\:{is}\:{wrong}! \\ $$$${the}\:{small}\:{triangle}\:{mustn}'{t}\:{be}\:{similar} \\ $$$${to}\:{the}\:{big}\:{triangle}.\:{the}\:{only}\: \\ $$$${important}\:{condition}\:{is}\:{that}\:{the} \\ $$$${circle}\:{must}\:{tangent}\:{the}\:{four}\:{sides}. \\ $$$${when}\:{you}\:{draw}\:{the}\:{triangle}\:{you}\:{got}, \\ $$$${you}\:{will}\:{see}\:{that}\:{the}\:{circle}\:{doesn}'{t} \\ $$$${tangent}\:{the}\:{fourth}\:{line}. \\ $$
Commented by SonGoku last updated on 01/Aug/24
$$\mathrm{I}\:\mathrm{got}\:\mathrm{it}.\: \\ $$$$\mathrm{If}\:\mathrm{the}\:\mathrm{fourth}\:\mathrm{line}\:\mathrm{were}\:\mathrm{to}\:\mathrm{touch}\:\mathrm{the}\:\mathrm{circle}, \\ $$$$\mathrm{would}\:\mathrm{it}\:\mathrm{be}\:\mathrm{correct}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{it}\:\mathrm{by}\:\mathrm{applying}\:\mathrm{triangle} \\ $$$$\mathrm{simlarity}? \\ $$
Commented by mr W last updated on 01/Aug/24
$${no}!\:{the}\:{condition}\:{which}\:{must}\:{be} \\ $$$${fulfilled}\:{is}\:{that}\:{the}\:{excircle}\:{of}\:{the} \\ $$$${small}\:{triangle}\:{is}\:{also}\:{the}\:{incircle}\:{of} \\ $$$${the}\:{big}\:{triangle}.\:{both}\:{triangles}\:{may} \\ $$$${be}\:{but}\:{not}\:{must}\:{be}\:{similar}. \\ $$
Commented by mr W last updated on 01/Aug/24
Commented by SonGoku last updated on 01/Aug/24
$$\mathrm{Understood}. \\ $$$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{for}\:\mathrm{thei} \\ $$$$\mathrm{informaton}\:\mathrm{and}\:\mathrm{for}\:\mathrm{your}\:\mathrm{patience}. \\ $$$$\mathrm{I}\:\mathrm{learn}\:\mathrm{a}\:\mathrm{lot}\:\mathrm{herei}\:\mathrm{wth}\:\mathrm{you}\:\mathrm{all}. \\ $$
Commented by mr W last updated on 01/Aug/24
Commented by mr W last updated on 01/Aug/24