Menu Close

Question-210157




Question Number 210157 by Spillover last updated on 01/Aug/24
Answered by A5T last updated on 01/Aug/24
Let distance of vertex,V, to centroid,G, be GV  ⇒((sin30°)/(GV))=((sin120^° )/x)⇒GV=((x/2)/((√3)/2))=((x(√3))/3)  H=(√(x^2 −GV^2 ))=(√(x^2 −(x^2 /3)))=((x(√6))/3)  Area=(1/3)×Area of base×H  =(1/3)×((1/2)×x^2 ×((√3)/2))×((x(√6))/3)=((3x^3 (√2))/(4×3×3))=((x^3 (√2))/(12))
$${Let}\:{distance}\:{of}\:{vertex},{V},\:{to}\:{centroid},{G},\:{be}\:{GV} \\ $$$$\Rightarrow\frac{{sin}\mathrm{30}°}{{GV}}=\frac{{sin}\mathrm{120}^{°} }{{x}}\Rightarrow{GV}=\frac{\frac{{x}}{\mathrm{2}}}{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}=\frac{{x}\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$${H}=\sqrt{{x}^{\mathrm{2}} −{GV}^{\mathrm{2}} }=\sqrt{{x}^{\mathrm{2}} −\frac{{x}^{\mathrm{2}} }{\mathrm{3}}}=\frac{{x}\sqrt{\mathrm{6}}}{\mathrm{3}} \\ $$$${Area}=\frac{\mathrm{1}}{\mathrm{3}}×{Area}\:{of}\:{base}×{H} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}×\left(\frac{\mathrm{1}}{\mathrm{2}}×{x}^{\mathrm{2}} ×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)×\frac{{x}\sqrt{\mathrm{6}}}{\mathrm{3}}=\frac{\mathrm{3}{x}^{\mathrm{3}} \sqrt{\mathrm{2}}}{\mathrm{4}×\mathrm{3}×\mathrm{3}}=\frac{{x}^{\mathrm{3}} \sqrt{\mathrm{2}}}{\mathrm{12}} \\ $$
Commented by Spillover last updated on 01/Aug/24
nice solution.
$${nice}\:{solution}. \\ $$
Commented by A5T last updated on 01/Aug/24
This is for a triangular pyramid, when all sides  are equilateral triangles. I ignored the square  while reading the question.
$${This}\:{is}\:{for}\:{a}\:\boldsymbol{{triangular}}\:{pyramid},\:{when}\:\boldsymbol{{all}}\:{sides} \\ $$$${are}\:{equilateral}\:{triangles}.\:{I}\:{ignored}\:{the}\:\boldsymbol{{square}} \\ $$$${while}\:{reading}\:{the}\:{question}. \\ $$
Answered by mr W last updated on 01/Aug/24
Commented by mr W last updated on 01/Aug/24
base area x^2   height h=(√(x^2 −((((√2)x)/2))^2 ))=(((√2)x)/( 2))  volume V=((x^2 h)/3)=(((√2)x^3 )/6)
$${base}\:{area}\:{x}^{\mathrm{2}} \\ $$$${height}\:{h}=\sqrt{{x}^{\mathrm{2}} −\left(\frac{\sqrt{\mathrm{2}}{x}}{\mathrm{2}}\right)^{\mathrm{2}} }=\frac{\sqrt{\mathrm{2}}{x}}{\:\mathrm{2}} \\ $$$${volume}\:{V}=\frac{{x}^{\mathrm{2}} {h}}{\mathrm{3}}=\frac{\sqrt{\mathrm{2}}{x}^{\mathrm{3}} }{\mathrm{6}} \\ $$
Commented by Spillover last updated on 01/Aug/24
nice solution
$${nice}\:{solution} \\ $$
Answered by Spillover last updated on 01/Aug/24

Leave a Reply

Your email address will not be published. Required fields are marked *