Menu Close

Prove-that-n-4-n-1-2-1-n-n-0-t-n-e-t-dt-n-2-




Question Number 210200 by Erico last updated on 02/Aug/24
Prove that  ∀n≥4       n!((1/2)−(1/( (√n)))) ≤ ∫^( n) _( 0) t^n e^(−t) dt ≤ ((n!)/2)
$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\forall\mathrm{n}\geqslant\mathrm{4}\:\:\:\:\:\:\:\mathrm{n}!\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}}}\right)\:\leqslant\:\underset{\:\mathrm{0}} {\int}^{\:\mathrm{n}} \mathrm{t}^{\mathrm{n}} \mathrm{e}^{−\mathrm{t}} \mathrm{dt}\:\leqslant\:\frac{\mathrm{n}!}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *