Question Number 210234 by peter frank last updated on 03/Aug/24
Commented by Pnk2024 last updated on 03/Aug/24
$$\:{we}\:{know}\:{that} \\ $$$$\:\:{sin}^{\mathrm{2}} \theta+{cos}^{\mathrm{2}} \theta=\mathrm{1} \\ $$$$\Rightarrow\:\:{cos}^{\mathrm{2}} \theta=\mathrm{1}−{sin}^{\mathrm{2}} \theta \\ $$$$\Rightarrow\:\:{cos}\theta\:×{cos}\theta\:=\:\left(\mathrm{1}+{sin}\theta\right)\left(\mathrm{1}−{sin}\theta\right) \\ $$$$\Rightarrow\:\frac{{cos}\theta}{\mathrm{1}−{sin}\theta}\:=\:\frac{\mathrm{1}+{sin}\theta}{{cos}\theta} \\ $$$$\Rightarrow\:\frac{{cos}\theta}{\mathrm{1}−{sin}\theta}=\frac{\mathrm{1}+{sin}\theta−{cos}\theta}{{cos}\theta−\left(\mathrm{1}−{sin}\theta\right)}\:{by}\:{theorem}\:{of}\:{equal}\:{ratio} \\ $$$$\Rightarrow\:\frac{{sin}\theta−{cos}\theta+\mathrm{1}}{{sin}\theta+{cos}\theta−\mathrm{1}}=\frac{{cos}\theta\:/{cos}\theta}{\left(\mathrm{1}−{sin}\theta\right)/{cos}\theta}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\frac{\mathrm{1}}{{cos}\theta}−\frac{{sin}\theta}{{cos}\theta}} \\ $$$$\Rightarrow\:\frac{{sin}\theta−{cos}\theta+\mathrm{1}}{{sin}\theta+{cos}\theta−\mathrm{1}}=\frac{\mathrm{1}}{{sec}\theta−{tan}\theta} \\ $$$$\:\:\:\:\:{this}\:{is}\:{proved}\: \\ $$
Commented by peter frank last updated on 04/Aug/24
$$\mathrm{thank}\:\mathrm{you} \\ $$
Answered by efronzo1 last updated on 04/Aug/24
$$\:\:\frac{\mathrm{sin}\:\theta−\mathrm{cos}\:\theta+\mathrm{1}}{\mathrm{sin}\:\theta+\mathrm{cos}\:\theta−\mathrm{1}}\:\overset{?} {=}\:\frac{\mathrm{1}}{\mathrm{sec}\:\theta−\mathrm{tan}\:\theta} \\ $$$$\:\:\:\underbrace{\Subset} \\ $$
Commented by peter frank last updated on 04/Aug/24
$$\mathrm{thank}\:\mathrm{you} \\ $$
Answered by BaliramKumar last updated on 04/Aug/24
$$\:\frac{\left(\mathrm{sinx}\:−\:\mathrm{cosx}\:+\:\mathrm{1}\right)/\mathrm{cosx}}{\left(\mathrm{sinx}\:+\:\mathrm{cosx}\:−\:\mathrm{1}\right)/\mathrm{cosx}}\:=\:\frac{\mathrm{tanx}\:+\:\mathrm{secx}\:−\:\mathrm{1}}{\mathrm{tanx}\:−\:\mathrm{secx}\:+\:\mathrm{1}} \\ $$$$\:\:\frac{\mathrm{tanx}\:+\:\mathrm{secx}\:−\:\mathrm{1}}{\mathrm{tanx}\:−\:\mathrm{secx}\:+\:\left(\mathrm{sec}^{\mathrm{2}} \mathrm{x}\:−\:\mathrm{tan}^{\mathrm{2}} \mathrm{x}\right)} \\ $$$$\:\:\frac{\mathrm{tanx}\:+\:\mathrm{secx}\:−\:\mathrm{1}}{\left(\mathrm{tanx}\:−\:\mathrm{secx}\right)\:+\:\left(\mathrm{secx}\:−\:\mathrm{tanx}\right)\left(\mathrm{secx}\:+\:\mathrm{tanx}\right)} \\ $$$$\:\:\frac{\mathrm{tanx}\:+\:\mathrm{secx}\:−\:\mathrm{1}}{\left(\mathrm{secx}\:−\:\mathrm{tanx}\right)\left(−\mathrm{1}\:+\:\mathrm{secx}\:+\:\mathrm{tanx}\right)} \\ $$$$\:\:\frac{\cancel{\left(\mathrm{tanx}\:+\:\mathrm{secx}\:−\:\mathrm{1}\right)}}{\left(\mathrm{secx}\:−\:\mathrm{tanx}\right)\cancel{\left(\mathrm{tanx}\:+\:\mathrm{secx}\:−\:\mathrm{1}\right)}}\: \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{secx}\:−\:\mathrm{tanx}} \\ $$$$ \\ $$$$ \\ $$
Commented by peter frank last updated on 04/Aug/24
$$\mathrm{thank}\:\mathrm{you} \\ $$