Question Number 210235 by peter frank last updated on 03/Aug/24
Commented by Pnk2024 last updated on 03/Aug/24
$$\bigtriangleup{ADB}\:\sim\bigtriangleup{EFB}\:\:\:\:….\:\left({A}−{A}\:{test}\right) \\ $$$$\Rightarrow\:\frac{{y}}{{x}}\:=\:\frac{{AB}}{{EB}}\:\:\:…….\:\left({C}.{S}.{S}.{T}\right) \\ $$$${again} \\ $$$$\bigtriangleup{BCA}\sim\bigtriangleup{EFA} \\ $$$$\Rightarrow\:\frac{{AE}}{{AB}}=\:\frac{{x}}{{z}}\:……..\:\left({C}.{S}.{S}.{T}.\right) \\ $$$$\:{now}\:\:\frac{{AE}}{{AB}}×\frac{{AB}}{{EB}}=\:\frac{{x}}{{z}}×\frac{{y}}{{x}} \\ $$$$\Rightarrow\:\frac{{AE}}{{EB}}=\frac{{y}}{{z}} \\ $$$$\Rightarrow\:\frac{{AE}}{{EB}+{AE}}=\frac{{y}}{{y}+{z}} \\ $$$$\Rightarrow\:\frac{{AE}}{{AB}}=\frac{{y}}{{y}+{z}}\:\:………\left({ii}\right) \\ $$$${but}\:{from}\:{above}\:\:\:\frac{{AE}}{{AB}}=\frac{{x}}{{z}} \\ $$$$\therefore\:\:\frac{{y}}{{y}+{z}}=\frac{{x}}{{z}}\:\: \\ $$$$\:\Rightarrow\:{yz}={xy}+{xz} \\ $$$$\:{dividing}\:\:{by}\:{xyz} \\ $$$$\Rightarrow\:\frac{{yz}}{{xyz}}=\frac{{xy}}{{xyz}}+\frac{{xz}}{{xyz}} \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{{x}}=\frac{\mathrm{1}}{{z}}+\frac{\mathrm{1}}{{y}}\:\:\:{this}\:{is}\:{proved} \\ $$$$ \\ $$
Commented by peter frank last updated on 04/Aug/24
$$\mathrm{thank}\:\mathrm{you} \\ $$
Answered by mr W last updated on 04/Aug/24
Commented by mr W last updated on 04/Aug/24
$$\frac{{x}}{{z}}=\frac{{a}+{b}}{{b}}=\mathrm{1}+\frac{{a}}{{b}}\:\Rightarrow\frac{{a}}{{b}}=\frac{{x}}{{z}}−\mathrm{1} \\ $$$$\frac{{y}}{{z}}=\frac{{a}+{b}}{{a}}=\mathrm{1}+\frac{{b}}{{a}}\:\Rightarrow\frac{{b}}{{a}}=\frac{{y}}{{z}}−\mathrm{1} \\ $$$$\Rightarrow\left(\frac{{x}}{{z}}−\mathrm{1}\right)\left(\frac{{y}}{{z}}−\mathrm{1}\right)=\mathrm{1} \\ $$$$\Rightarrow{xy}=\left({x}+{y}\right){z} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{z}}=\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}\:\checkmark \\ $$
Commented by peter frank last updated on 04/Aug/24
$$\mathrm{thank}\:\mathrm{you} \\ $$
Answered by A5T last updated on 04/Aug/24
Commented by A5T last updated on 04/Aug/24
$$\frac{{x}}{{y}}=\frac{{BE}}{{BA}};\frac{{x}}{{z}}=\frac{{EA}}{{BA}} \\ $$$$\Rightarrow\frac{{x}}{{y}}+\frac{{x}}{{z}}=\frac{{BE}+{EA}}{{BA}}=\mathrm{1}\Rightarrow\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}=\frac{\mathrm{1}}{{x}} \\ $$