Menu Close

If-we-observe-when-light-source-illuminates-the-surface-of-an-object-lets-say-its-a-sphere-football-the-area-visible-zone-decreases-as-the-light-source-comes-near-the-surface-So-calculate-rate-of-




Question Number 210265 by BHOOPENDRA last updated on 04/Aug/24
If we observe when light source   illuminates the surface of an object  lets say its a sphere(football) ,the area  visible zone decreases as the light source  comes near the surface.So  calculate rate of change  visible area when light source is coming  towards the object or moving away   from the object.And in the case of earth  find the equation in function of time  If the light object is coming from space  towards earth, express that expression  in the function of time
$${If}\:{we}\:{observe}\:{when}\:{light}\:{source}\: \\ $$$${illuminates}\:{the}\:{surface}\:{of}\:{an}\:{object} \\ $$$${lets}\:{say}\:{its}\:{a}\:{sphere}\left({football}\right)\:,{the}\:{area} \\ $$$${visible}\:{zone}\:{decreases}\:{as}\:{the}\:{light}\:{source} \\ $$$${comes}\:{near}\:{the}\:{surface}.{So}\:\:{calculate}\:{rate}\:{of}\:{change} \\ $$$${visible}\:{area}\:{when}\:{light}\:{source}\:{is}\:{coming} \\ $$$${towards}\:{the}\:{object}\:{or}\:{moving}\:{away}\: \\ $$$${from}\:{the}\:{object}.{And}\:{in}\:{the}\:{case}\:{of}\:{earth} \\ $$$${find}\:{the}\:{equation}\:{in}\:{function}\:{of}\:{time} \\ $$$${If}\:{the}\:{light}\:{object}\:{is}\:{coming}\:{from}\:{space} \\ $$$${towards}\:{earth},\:{express}\:{that}\:{expression} \\ $$$${in}\:{the}\:{function}\:{of}\:{time} \\ $$$$ \\ $$$$ \\ $$
Commented by mr W last updated on 04/Aug/24
what do you mean with “time” in  “as the function of time”?
$${what}\:{do}\:{you}\:{mean}\:{with}\:“{time}''\:{in} \\ $$$$“{as}\:{the}\:{function}\:{of}\:{time}''? \\ $$
Commented by BHOOPENDRA last updated on 04/Aug/24
yes sorry that was typing mistake  Define S as a function of time
$${yes}\:{sorry}\:{that}\:{was}\:{typing}\:{mistake} \\ $$$${Define}\:{S}\:{as}\:{a}\:{function}\:{of}\:{time} \\ $$
Commented by mr W last updated on 04/Aug/24
what do you mean with “time”?
$${what}\:{do}\:{you}\:{mean}\:{with}\:“{time}''? \\ $$
Commented by BHOOPENDRA last updated on 04/Aug/24
Commented by BHOOPENDRA last updated on 04/Aug/24
Commented by BHOOPENDRA last updated on 04/Aug/24
Commented by BHOOPENDRA last updated on 04/Aug/24
Commented by BHOOPENDRA last updated on 04/Aug/24
Commented by BHOOPENDRA last updated on 04/Aug/24
Commented by BHOOPENDRA last updated on 04/Aug/24
Commented by BHOOPENDRA last updated on 04/Aug/24
I have attached my approch sir can you  tell me where i have mistaken?
$${I}\:{have}\:{attached}\:{my}\:{approch}\:{sir}\:{can}\:{you} \\ $$$${tell}\:{me}\:{where}\:{i}\:{have}\:{mistaken}? \\ $$
Answered by mr W last updated on 04/Aug/24
Commented by mr W last updated on 04/Aug/24
OS=l  (dl/dt)=−v  cos θ=(R/l)  A=2πR^2 (1−cos θ)  A=2πR^2 (1−(R/l))  let λ=(R/l)  (dλ/dt)=−(R/l^2 )×(dl/dt)=((Rv)/l^2 )=((λ^2 v)/R)  A=2πR^2 (1−λ)  (dA/dt)=−2πR^2 ×(dλ/dt)  (dA/dt)=−2πR^2 ×(((λ^2 v)/R))  ⇒(dA/dt)=−((2πR^3 v)/l^2 )  a=(dv/dt)=−v(dv/dl)=((GM)/l^2 )  −vdv=((GMdl)/l^2 )  ∫_0 ^v vdv=−GM∫_l_0  ^l (dl/l^2 )  (v^2 /2)=GM((1/l)−(1/l_0 ))  v=(√(2GM((1/l)−(1/l_0 ))))  ⇒(dA/dt)=−((2πR^3 )/l^2 )(√(2GM((1/l)−(1/l_0 ))))
$${OS}={l} \\ $$$$\frac{{dl}}{{dt}}=−{v} \\ $$$$\mathrm{cos}\:\theta=\frac{{R}}{{l}} \\ $$$${A}=\mathrm{2}\pi{R}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\theta\right) \\ $$$${A}=\mathrm{2}\pi{R}^{\mathrm{2}} \left(\mathrm{1}−\frac{{R}}{{l}}\right) \\ $$$${let}\:\lambda=\frac{{R}}{{l}} \\ $$$$\frac{{d}\lambda}{{dt}}=−\frac{{R}}{{l}^{\mathrm{2}} }×\frac{{dl}}{{dt}}=\frac{{Rv}}{{l}^{\mathrm{2}} }=\frac{\lambda^{\mathrm{2}} {v}}{{R}} \\ $$$${A}=\mathrm{2}\pi{R}^{\mathrm{2}} \left(\mathrm{1}−\lambda\right) \\ $$$$\frac{{dA}}{{dt}}=−\mathrm{2}\pi{R}^{\mathrm{2}} ×\frac{{d}\lambda}{{dt}} \\ $$$$\frac{{dA}}{{dt}}=−\mathrm{2}\pi{R}^{\mathrm{2}} ×\left(\frac{\lambda^{\mathrm{2}} {v}}{{R}}\right) \\ $$$$\Rightarrow\frac{{dA}}{{dt}}=−\frac{\mathrm{2}\pi{R}^{\mathrm{3}} {v}}{{l}^{\mathrm{2}} } \\ $$$${a}=\frac{{dv}}{{dt}}=−{v}\frac{{dv}}{{dl}}=\frac{{GM}}{{l}^{\mathrm{2}} } \\ $$$$−{vdv}=\frac{{GMdl}}{{l}^{\mathrm{2}} } \\ $$$$\int_{\mathrm{0}} ^{{v}} {vdv}=−{GM}\int_{{l}_{\mathrm{0}} } ^{{l}} \frac{{dl}}{{l}^{\mathrm{2}} } \\ $$$$\frac{{v}^{\mathrm{2}} }{\mathrm{2}}={GM}\left(\frac{\mathrm{1}}{{l}}−\frac{\mathrm{1}}{{l}_{\mathrm{0}} }\right) \\ $$$${v}=\sqrt{\mathrm{2}{GM}\left(\frac{\mathrm{1}}{{l}}−\frac{\mathrm{1}}{{l}_{\mathrm{0}} }\right)} \\ $$$$\Rightarrow\frac{{dA}}{{dt}}=−\frac{\mathrm{2}\pi{R}^{\mathrm{3}} }{{l}^{\mathrm{2}} }\sqrt{\mathrm{2}{GM}\left(\frac{\mathrm{1}}{{l}}−\frac{\mathrm{1}}{{l}_{\mathrm{0}} }\right)} \\ $$
Commented by BHOOPENDRA last updated on 04/Aug/24
⇒(dA/dt)=−((2πR^3 v)/l^2 )  Nice can you tell me   rest of  the things are correct?
$$\Rightarrow\frac{{dA}}{{dt}}=−\frac{\mathrm{2}\pi{R}^{\mathrm{3}} {v}}{{l}^{\mathrm{2}} }\:\:{Nice}\:{can}\:{you}\:{tell}\:{me}\: \\ $$$${rest}\:{of}\:\:{the}\:{things}\:{are}\:{correct}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *