Question Number 210265 by BHOOPENDRA last updated on 04/Aug/24
$${If}\:{we}\:{observe}\:{when}\:{light}\:{source}\: \\ $$$${illuminates}\:{the}\:{surface}\:{of}\:{an}\:{object} \\ $$$${lets}\:{say}\:{its}\:{a}\:{sphere}\left({football}\right)\:,{the}\:{area} \\ $$$${visible}\:{zone}\:{decreases}\:{as}\:{the}\:{light}\:{source} \\ $$$${comes}\:{near}\:{the}\:{surface}.{So}\:\:{calculate}\:{rate}\:{of}\:{change} \\ $$$${visible}\:{area}\:{when}\:{light}\:{source}\:{is}\:{coming} \\ $$$${towards}\:{the}\:{object}\:{or}\:{moving}\:{away}\: \\ $$$${from}\:{the}\:{object}.{And}\:{in}\:{the}\:{case}\:{of}\:{earth} \\ $$$${find}\:{the}\:{equation}\:{in}\:{function}\:{of}\:{time} \\ $$$${If}\:{the}\:{light}\:{object}\:{is}\:{coming}\:{from}\:{space} \\ $$$${towards}\:{earth},\:{express}\:{that}\:{expression} \\ $$$${in}\:{the}\:{function}\:{of}\:{time} \\ $$$$ \\ $$$$ \\ $$
Commented by mr W last updated on 04/Aug/24
$${what}\:{do}\:{you}\:{mean}\:{with}\:“{time}''\:{in} \\ $$$$“{as}\:{the}\:{function}\:{of}\:{time}''? \\ $$
Commented by BHOOPENDRA last updated on 04/Aug/24
$${yes}\:{sorry}\:{that}\:{was}\:{typing}\:{mistake} \\ $$$${Define}\:{S}\:{as}\:{a}\:{function}\:{of}\:{time} \\ $$
Commented by mr W last updated on 04/Aug/24
$${what}\:{do}\:{you}\:{mean}\:{with}\:“{time}''? \\ $$
Commented by BHOOPENDRA last updated on 04/Aug/24
Commented by BHOOPENDRA last updated on 04/Aug/24
Commented by BHOOPENDRA last updated on 04/Aug/24
Commented by BHOOPENDRA last updated on 04/Aug/24
Commented by BHOOPENDRA last updated on 04/Aug/24
Commented by BHOOPENDRA last updated on 04/Aug/24
Commented by BHOOPENDRA last updated on 04/Aug/24
Commented by BHOOPENDRA last updated on 04/Aug/24
$${I}\:{have}\:{attached}\:{my}\:{approch}\:{sir}\:{can}\:{you} \\ $$$${tell}\:{me}\:{where}\:{i}\:{have}\:{mistaken}? \\ $$
Answered by mr W last updated on 04/Aug/24
Commented by mr W last updated on 04/Aug/24
$${OS}={l} \\ $$$$\frac{{dl}}{{dt}}=−{v} \\ $$$$\mathrm{cos}\:\theta=\frac{{R}}{{l}} \\ $$$${A}=\mathrm{2}\pi{R}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\theta\right) \\ $$$${A}=\mathrm{2}\pi{R}^{\mathrm{2}} \left(\mathrm{1}−\frac{{R}}{{l}}\right) \\ $$$${let}\:\lambda=\frac{{R}}{{l}} \\ $$$$\frac{{d}\lambda}{{dt}}=−\frac{{R}}{{l}^{\mathrm{2}} }×\frac{{dl}}{{dt}}=\frac{{Rv}}{{l}^{\mathrm{2}} }=\frac{\lambda^{\mathrm{2}} {v}}{{R}} \\ $$$${A}=\mathrm{2}\pi{R}^{\mathrm{2}} \left(\mathrm{1}−\lambda\right) \\ $$$$\frac{{dA}}{{dt}}=−\mathrm{2}\pi{R}^{\mathrm{2}} ×\frac{{d}\lambda}{{dt}} \\ $$$$\frac{{dA}}{{dt}}=−\mathrm{2}\pi{R}^{\mathrm{2}} ×\left(\frac{\lambda^{\mathrm{2}} {v}}{{R}}\right) \\ $$$$\Rightarrow\frac{{dA}}{{dt}}=−\frac{\mathrm{2}\pi{R}^{\mathrm{3}} {v}}{{l}^{\mathrm{2}} } \\ $$$${a}=\frac{{dv}}{{dt}}=−{v}\frac{{dv}}{{dl}}=\frac{{GM}}{{l}^{\mathrm{2}} } \\ $$$$−{vdv}=\frac{{GMdl}}{{l}^{\mathrm{2}} } \\ $$$$\int_{\mathrm{0}} ^{{v}} {vdv}=−{GM}\int_{{l}_{\mathrm{0}} } ^{{l}} \frac{{dl}}{{l}^{\mathrm{2}} } \\ $$$$\frac{{v}^{\mathrm{2}} }{\mathrm{2}}={GM}\left(\frac{\mathrm{1}}{{l}}−\frac{\mathrm{1}}{{l}_{\mathrm{0}} }\right) \\ $$$${v}=\sqrt{\mathrm{2}{GM}\left(\frac{\mathrm{1}}{{l}}−\frac{\mathrm{1}}{{l}_{\mathrm{0}} }\right)} \\ $$$$\Rightarrow\frac{{dA}}{{dt}}=−\frac{\mathrm{2}\pi{R}^{\mathrm{3}} }{{l}^{\mathrm{2}} }\sqrt{\mathrm{2}{GM}\left(\frac{\mathrm{1}}{{l}}−\frac{\mathrm{1}}{{l}_{\mathrm{0}} }\right)} \\ $$
Commented by BHOOPENDRA last updated on 04/Aug/24
$$\Rightarrow\frac{{dA}}{{dt}}=−\frac{\mathrm{2}\pi{R}^{\mathrm{3}} {v}}{{l}^{\mathrm{2}} }\:\:{Nice}\:{can}\:{you}\:{tell}\:{me}\: \\ $$$${rest}\:{of}\:\:{the}\:{things}\:{are}\:{correct}? \\ $$