Menu Close

Prove-the-theorem-A-non-empty-subset-W-of-a-vector-space-V-F-is-the-subset-of-V-if-and-only-if-W-1-W-2-W-F-and-W-1-W-2-W-




Question Number 210297 by Spillover last updated on 05/Aug/24
Prove the theorem.  A non empty subset W  of a vector space V(F)  is the subset of V  if  and only if  αW_1 +βW_2  ∈W  ∀α,β ∈ F  and W_1 ,W_2  ∈W
$${Prove}\:{the}\:{theorem}. \\ $$$${A}\:{non}\:{empty}\:{subset}\:{W}\:\:{of}\:{a}\:{vector}\:{space}\:{V}\left({F}\right) \\ $$$${is}\:{the}\:{subset}\:{of}\:{V}\:\:{if}\:\:{and}\:{only}\:{if} \\ $$$$\alpha{W}_{\mathrm{1}} +\beta{W}_{\mathrm{2}} \:\in{W}\:\:\forall\alpha,\beta\:\in\:{F}\:\:{and}\:{W}_{\mathrm{1}} ,{W}_{\mathrm{2}} \:\in{W} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *