Menu Close

Question-210289




Question Number 210289 by Abdullahrussell last updated on 05/Aug/24
Answered by Frix last updated on 05/Aug/24
There′s one number x with nice properties:  x^2 =x+1, x^3 =2x+1,  (1/x)=x−1, (1/x^2 )=2−x, (1/x^3 )=2x−1  ⇒  (√((x−1)/x^3 ))=(√(1/x^4 ))=(1/x^2 )=2−x  (√((x^2 −1)/x^3 ))=(√(1/x^2 ))=(1/x)=x−1  2−x+x−1=1 true ⇒  The number is x=ϕ=(1/2)+((√5)/2)
$$\mathrm{There}'\mathrm{s}\:\mathrm{one}\:\mathrm{number}\:{x}\:\mathrm{with}\:\mathrm{nice}\:\mathrm{properties}: \\ $$$${x}^{\mathrm{2}} ={x}+\mathrm{1},\:{x}^{\mathrm{3}} =\mathrm{2}{x}+\mathrm{1}, \\ $$$$\frac{\mathrm{1}}{{x}}={x}−\mathrm{1},\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{2}−{x},\:\frac{\mathrm{1}}{{x}^{\mathrm{3}} }=\mathrm{2}{x}−\mathrm{1} \\ $$$$\Rightarrow \\ $$$$\sqrt{\frac{{x}−\mathrm{1}}{{x}^{\mathrm{3}} }}=\sqrt{\frac{\mathrm{1}}{{x}^{\mathrm{4}} }}=\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{2}−{x} \\ $$$$\sqrt{\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{3}} }}=\sqrt{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}=\frac{\mathrm{1}}{{x}}={x}−\mathrm{1} \\ $$$$\mathrm{2}−{x}+{x}−\mathrm{1}=\mathrm{1}\:\mathrm{true}\:\Rightarrow \\ $$$$\mathrm{The}\:\mathrm{number}\:\mathrm{is}\:{x}=\varphi=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *