Menu Close

x-2-1-x-2-1-1-x-4-




Question Number 210307 by Spillover last updated on 05/Aug/24
                            ∫((x^2 −1)/((x^2 +1)((√(1+x^4 )) )))
$$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left(\sqrt{\mathrm{1}+{x}^{\mathrm{4}} }\:\right)} \\ $$$$ \\ $$
Answered by Spillover last updated on 07/Aug/24
Answered by Spillover last updated on 07/Aug/24
Answered by Frix last updated on 07/Aug/24
I found another path:    ∫((x^2 −1)/((x^2 +1)(√(x^4 +1))))dx =^(t=((2x)/(x^2 +1)))     =−(1/( (√2)))∫(dt/( (√(2−t^2 )))) =^(u=sin^(−1)  (t/( (√2))))     =−(1/( (√2)))∫du=−(u/( (√2)))=−((√2)/2)sin^(−1)  ((t(√2))/2) =    =−((√2)/2)sin^(−1)  ((x(√2))/(x^2 +1)) +C
$$\mathrm{I}\:\mathrm{found}\:\mathrm{another}\:\mathrm{path}: \\ $$$$ \\ $$$$\int\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt{{x}^{\mathrm{4}} +\mathrm{1}}}{dx}\:\overset{{t}=\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\mathrm{1}}} {=} \\ $$$$ \\ $$$$=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\frac{{dt}}{\:\sqrt{\mathrm{2}−{t}^{\mathrm{2}} }}\:\overset{{u}=\mathrm{sin}^{−\mathrm{1}} \:\frac{{t}}{\:\sqrt{\mathrm{2}}}} {=} \\ $$$$ \\ $$$$=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int{du}=−\frac{{u}}{\:\sqrt{\mathrm{2}}}=−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{sin}^{−\mathrm{1}} \:\frac{{t}\sqrt{\mathrm{2}}}{\mathrm{2}}\:= \\ $$$$ \\ $$$$=−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{sin}^{−\mathrm{1}} \:\frac{{x}\sqrt{\mathrm{2}}}{{x}^{\mathrm{2}} +\mathrm{1}}\:+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *