Menu Close

1-2-3-n-irrational-




Question Number 210467 by maths_plus last updated on 09/Aug/24
1+(√2)+(√3)+...+(√n)   irrational ???
1+2+3++nirrational???
Answered by Frix last updated on 10/Aug/24
Yes!!!
Yes!!!
Commented by maths_plus last updated on 10/Aug/24
please, prove it !
please,proveit!
Answered by TonyCWX08 last updated on 10/Aug/24
This can be converted to   ∫_1 ^∞ ((√n))dn  =l_a i_⇒ m_∞  [∫_1 ^a ((√n))dn]  =l_a i_⇒ m_∞  [((2n(√n))/3)]_1 ^a   =l_a i_⇒ m_∞  [((2a(√a))/3)−(2/3)]  =∞  =Diverges
Thiscanbeconvertedto1(n)dn=laim[1a(n)dn]=laim[2nn3]1a=laim[2aa323]==Diverges
Answered by Frix last updated on 10/Aug/24
(√2) is incommensurable to any q∈Q  Let q_j ∈Q  Σ_(k=1) ^n (√n)=1+(√2)+Σ_(k=3) ^n (√n)  (1+(√2)+Σ_(k=3) ^n (√n))∈Q ⇒ Σ_(k=3) ^n (√n)=q_1 −(√2)  Σ_(k=3) ^n (√n)=2+(√3)+Σ_(k=5) ^n (√n)  (2+(√3)+Σ_(k=5) ^n (√n))∈Q ⇒ Σ_(k=5) ^n (√n)=q_2 −(√3)  Σ_(k=5) ^n (√n)=3+(√5)+(√6)+(√7)+(√8)+Σ_(k=10) ^n (√n)  ...  ⇒ for n∈N you never reach Σ_(k=1) ^n (√n)∈Q  because at least the greatest prime p≤n  gives (√p) which again is incommensurable  to any q∈Q, so if Σ_(k=1) ^m (√n)=q_m ∈Q we have  q_m +(√(m+1))+(√(m+2))+...(√p)+...(√(n−1))+(√n)∉Q  and lim_(n→∞)  Σ_(k=1) ^n (√n) =+∞ ∉Q
2isincommensurabletoanyqQLetqjQnk=1n=1+2+nk=3n(1+2+nk=3n)Qnk=3n=q12nk=3n=2+3+nk=5n(2+3+nk=5n)Qnk=5n=q23nk=5n=3+5+6+7+8+nk=10nfornNyouneverreachnk=1nQbecauseatleastthegreatestprimepngivespwhichagainisincommensurabletoanyqQ,soifmk=1n=qmQwehaveqm+m+1+m+2+p+n1+nQandlimnnk=1n=+Q

Leave a Reply

Your email address will not be published. Required fields are marked *