Menu Close

Question-210441




Question Number 210441 by universe last updated on 09/Aug/24
Answered by aleks041103 last updated on 09/Aug/24
(i)   for odd n, the function sin^n (nx) is similar  to sin(x) with the fact that the primitive function oscilates  between 0 and the maximal possible value  ∫_0 ^( π/n) sin^n (nx)dx = (1/n)∫_0 ^( π) sin^n (x)dx≤  ≤(1/n)∫_0 ^( π) sin(x)dx=(2/n)    s_n =F_n (1)−F_n (0)  for odd n we have F_n (x)∈[0,2/n]  then s_n ≤(2/n), odd n.
(i)foroddn,thefunctionsinn(nx)issimilartosin(x)withthefactthattheprimitivefunctionoscilatesbetween0andthemaximalpossiblevalue0π/nsinn(nx)dx=1n0πsinn(x)dx1n0πsin(x)dx=2nsn=Fn(1)Fn(0)foroddnwehaveFn(x)[0,2/n]thensn2n,oddn.
Answered by aleks041103 last updated on 09/Aug/24
(ii) for even n:  ∫_0 ^( 1) sin^n (nx)dx=(1/n)∫_0 ^( n) sin^n (x)dx=  =(1/n)[Σ_(k=0) ^(⌊n/π⌋−1) ∫_(πk) ^( π(k+1)) sin^n (x)dx + ∫_(π⌊n/π⌋) ^( n) sin^n (x)dx]=  =(1/n)(⌊(n/π)⌋+c)∫_0 ^( π) sin^n (x)dx  where 0<c<1.    now let  I_n =∫_0 ^( π) sin^(2n) (x)dx=  =∫_0 ^( π) sin^(2n−2) (x)dx − ∫_0 ^( π) cos(x)d(((sin^(2n−1) (x))/(2n−1)))dx=  =I_(n−1) −[((sin^(2n−1) (x)cos(x))/(2n−1))]_0 ^π −(1/(2n−1))∫_0 ^( π) sin^(2n) (x)dx=  =I_(n−1) −(1/(2n−1))I_n   ⇒I_(n−1) =((2n)/(2n−1))I_n   ⇒I_n =((2n−1)/(2n))I_(n−1)   ⇒I_n =(((2n−1)(2n−3)...3.1)/((2n)(2n−2)...4.2))I_0   I_0 =∫_0 ^( π) dx=π  ⇒I_n =(((2n−1)!!)/((2n)!!))π  (2n)!!=2^n n!  (2n−1)!!=(((2n)!)/((2n)!!))=(((2n)!)/(2^n n!))  ⇒I_n =(((2n)!)/(4^n (n!)^2 ))π  ⇒s_(2n) =(1/(2n))(⌊((2n)/π)⌋+c_n )I_n =(π/(2n))(⌊((2n)/π)⌋+c_n )(((2n)!)/(4^n (n!)^2 ))  Stirling:  x! ∼ (√(2πx)) ((x/e))^x   ⇒(2n)! ∼ (√(4πn))(((2n)/e))^(2n) =(√(4πn ))4^n  ((n/e))^(2n)   ⇒(n!)^2  ∼ 2πn((n/e))^(2n)   ⇒s_(2n) =(π/(2n))(⌊((2n)/π)⌋+c_n )(((2n)!)/(4^n (n!)^2 )) ∼ (π/(2n))(⌊((2n)/π)⌋+c_n )((√(4πn))/(2πn))  ⇒s_(2n) ∼ (π/(2n))(⌊((2n)/π)⌋+c_n )(1/( (√(πn))))  it is easy to see that (π/(2n))⌊((2n)/π)⌋∼1  ⇒s_(2n) ∼ (1/( (√(πn))))  ⇒s_(2n) →0    from (i) we have 0<s_(2n+1) <(2/(2n+1))  ⇒s_(2n+1) →0    ⇒s_n →0  ⇒ the only limiting point is 0.
(ii)forevenn:01sinn(nx)dx=1n0nsinn(x)dx==1n[n/π1k=0πkπ(k+1)sinn(x)dx+πn/πnsinn(x)dx]==1n(nπ+c)0πsinn(x)dxwhere0<c<1.nowletIn=0πsin2n(x)dx==0πsin2n2(x)dx0πcos(x)d(sin2n1(x)2n1)dx==In1[sin2n1(x)cos(x)2n1]0π12n10πsin2n(x)dx==In112n1InIn1=2n2n1InIn=2n12nIn1In=(2n1)(2n3)3.1(2n)(2n2)4.2I0I0=0πdx=πIn=(2n1)!!(2n)!!π(2n)!!=2nn!(2n1)!!=(2n)!(2n)!!=(2n)!2nn!In=(2n)!4n(n!)2πs2n=12n(2nπ+cn)In=π2n(2nπ+cn)(2n)!4n(n!)2Stirling:x!2πx(xe)x(2n)!4πn(2ne)2n=4πn4n(ne)2n(n!)22πn(ne)2ns2n=π2n(2nπ+cn)(2n)!4n(n!)2π2n(2nπ+cn)4πn2πns2nπ2n(2nπ+cn)1πnitiseasytoseethatπ2n2nπ1s2n1πns2n0from(i)wehave0<s2n+1<22n+1s2n+10sn0theonlylimitingpointis0.
Commented by hardmath last updated on 11/Aug/24
  Dear professor, your solutions are perfect
Dear professor, your solutions are perfect

Leave a Reply

Your email address will not be published. Required fields are marked *