Menu Close

Find-1-7-2-1-11-2-1-13-2-1-17-2-1-19-2-1-23-2-1-29-2-




Question Number 210515 by hardmath last updated on 11/Aug/24
Find:  (1/7^2 ) + (1/(11^2 )) + (1/(13^2 )) + (1/(17^2 )) + (1/(19^2 )) + (1/(23^2 )) + (1/(29^2 )) + ... = ?
$$\mathrm{Find}: \\ $$$$\frac{\mathrm{1}}{\mathrm{7}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{11}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{13}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{17}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{19}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{23}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{29}^{\mathrm{2}} }\:+\:…\:=\:? \\ $$
Commented by mr W last updated on 11/Aug/24
please recheck!  is the last given term (1/(25^2 )) or really (1/(29^2 ))?
$${please}\:{recheck}! \\ $$$${is}\:{the}\:{last}\:{given}\:{term}\:\frac{\mathrm{1}}{\mathrm{25}^{\mathrm{2}} }\:{or}\:{really}\:\frac{\mathrm{1}}{\mathrm{29}^{\mathrm{2}} }? \\ $$
Commented by hardmath last updated on 11/Aug/24
  Dear professor, the condition is given in this way
$$ \\ $$Dear professor, the condition is given in this way
Commented by hardmath last updated on 11/Aug/24
  Dear professpr, maybe there was a mistake
$$ \\ $$Dear professpr, maybe there was a mistake
Commented by mr W last updated on 11/Aug/24
when the question is as you wrote,  then it has no sense, not to say that  we can solve it.
$${when}\:{the}\:{question}\:{is}\:{as}\:{you}\:{wrote}, \\ $$$${then}\:{it}\:{has}\:{no}\:{sense},\:{not}\:{to}\:{say}\:{that} \\ $$$${we}\:{can}\:{solve}\:{it}. \\ $$
Commented by hardmath last updated on 11/Aug/24
Thank you dear professor
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$
Commented by aleks041103 last updated on 11/Aug/24
Maybe the demominators are the  squares of primes.
$${Maybe}\:{the}\:{demominators}\:{are}\:{the} \\ $$$${squares}\:{of}\:{primes}. \\ $$
Commented by mr W last updated on 11/Aug/24
maybe. but then he could have made  clear with  (1/2^2 )+(1/3^2 )+(1/5^2 )+(1/7^2 )+etc.+(1/(29^2 ))+...  but even though can we solve  Σ_(all primes ) (1/p^2 )=?
$${maybe}.\:{but}\:{then}\:{he}\:{could}\:{have}\:{made} \\ $$$${clear}\:{with} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{7}^{\mathrm{2}} }+{etc}.+\frac{\mathrm{1}}{\mathrm{29}^{\mathrm{2}} }+… \\ $$$${but}\:{even}\:{though}\:{can}\:{we}\:{solve} \\ $$$$\underset{{all}\:{primes}\:} {\sum}\frac{\mathrm{1}}{{p}^{\mathrm{2}} }=? \\ $$
Commented by aleks041103 last updated on 11/Aug/24
Commented by aleks041103 last updated on 11/Aug/24
taken from mathstackexchange
$${taken}\:{from}\:{mathstackexchange} \\ $$
Commented by mr W last updated on 11/Aug/24
thanks alot sir!
$${thanks}\:{alot}\:{sir}! \\ $$
Commented by Frix last updated on 12/Aug/24
Even if it′s meant to be  Σ_(k=0) ^∞ ((1/((6k+7)^2 ))+(1/((6k+11)^2 )))  it′s not easy to solve...  I guess it should be aπ^2 +b with a, b ∈Q
$$\mathrm{Even}\:\mathrm{if}\:\mathrm{it}'\mathrm{s}\:\mathrm{meant}\:\mathrm{to}\:\mathrm{be} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\left(\mathrm{6}{k}+\mathrm{7}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{6}{k}+\mathrm{11}\right)^{\mathrm{2}} }\right) \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{solve}… \\ $$$$\mathrm{I}\:\mathrm{guess}\:\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:{a}\pi^{\mathrm{2}} +{b}\:\mathrm{with}\:{a},\:{b}\:\in\mathbb{Q} \\ $$
Commented by Frix last updated on 12/Aug/24
≈Σ_(k=0) ^(10000)  looks like (π^2 /9)−((26)/(25))
$$\approx\underset{{k}=\mathrm{0}} {\overset{\mathrm{10000}} {\sum}}\:\mathrm{looks}\:\mathrm{like}\:\frac{\pi^{\mathrm{2}} }{\mathrm{9}}−\frac{\mathrm{26}}{\mathrm{25}} \\ $$
Commented by hardmath last updated on 12/Aug/24
thank you dear professors
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professors} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *