Question Number 210554 by Batmath last updated on 12/Aug/24
Answered by MrGaster last updated on 02/Nov/24
$$\int_{\mathrm{0}} ^{\infty} \left[\frac{\mathrm{1}}{\mathrm{2}}−{S}\left({px}\right)\right]{x}^{\mathrm{2}{q}−\mathrm{1}} {dx}=\int_{\mathrm{0}} ^{\infty} \left[\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}\left({tpx}\right)}{{t}}{dt}\right]{x}^{\mathrm{2}{q}−\mathrm{1}} {dx} \\ $$$$=\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{sin}\left({tpx}\right)}{{t}}\right]{x}^{\mathrm{2}{q}−\mathrm{1}} {dtdx} \\ $$$$=\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}{q}−\mathrm{1}} {dxdt}−\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}\left({tpx}\right)}{{t}}{x}^{\mathrm{2}{q}−\mathrm{1}} {dtdx} \\ $$$$=\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{2}}\:\frac{{x}^{\mathrm{2}{q}} }{\mathrm{2}{q}}\mid_{\mathrm{0}} ^{\infty} {dt}−\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{t}}\left[\frac{−\mathrm{cos}\left({tpx}\right)}{\mathrm{2}{qp}}{x}^{\mathrm{2}{q}} \right]\mid_{\mathrm{0}} ^{\infty} {dt} \\ $$$$=\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{2}}\centerdot\frac{\mathrm{1}}{\mathrm{2}{a}}\underset{{x}\rightarrow\infty} {\mathrm{lim}}{x}^{\mathrm{2}{a}} {dt}−\frac{\mathrm{1}}{{x}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{t}}\centerdot\frac{\mathrm{1}}{\mathrm{2}{qp}}\left[\underset{{x}\rightarrow\infty} {\mathrm{lim}cos}\left({tqx}\right){x}^{\mathrm{2}{q}} −\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}cos}\left({tqx}\right){x}^{\mathrm{2}{q}} \right]{dt} \\ $$$$=\frac{\mathrm{1}}{\pi}\centerdot\frac{\mathrm{1}}{\mathrm{2}{q}}\centerdot\frac{\mathrm{1}}{\mathrm{2}}\centerdot\infty−\frac{\mathrm{1}}{\pi}\centerdot\frac{\mathrm{1}}{\mathrm{2}{qp}}\left[\mathrm{0}−\mathrm{1}\right]\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{t}^{\mathrm{2}{q}+\mathrm{1}} }{dt} \\ $$$$=\frac{\mathrm{1}}{\pi}\centerdot\frac{\mathrm{1}}{\mathrm{2}{qp}}\centerdot\frac{\pi}{\mathrm{2}}\centerdot\frac{\mathrm{1}}{\Gamma\left(\mathrm{2}{q}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}{qp}}\centerdot\frac{\Gamma\left(\mathrm{2}{q}+\mathrm{1}\right)}{\Gamma\left(\mathrm{2}{q}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}{qp}}\centerdot\frac{\Gamma\left(\mathrm{2}{q}+\mathrm{1}\right)}{\mathrm{2}{q}\Gamma\left(\mathrm{2}{q}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}{qp}}\centerdot\frac{\Gamma\left(\mathrm{2}{q}+\mathrm{1}\right)}{\mathrm{2}\sqrt{\pi}\Gamma\left(\mathrm{2}{q}+\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$$$=\sqrt{\mathrm{2}}\frac{\Gamma\left({q}+\frac{\mathrm{1}}{\mathrm{2}}\right)\mathrm{sin}\frac{\mathrm{2}{q}+\mathrm{1}}{\mathrm{4}}\pi}{\mathrm{4}\sqrt{\pi}{qp}^{\mathrm{2}{q}} } \\ $$