Question Number 210591 by Tawa11 last updated on 13/Aug/24
$$\mathrm{If} \\ $$$$\:\:\:\:\mathrm{a}\:\:+\:\:\mathrm{b}\:\:=\:\:\mathrm{1} \\ $$$$\:\:\:\mathrm{a}^{\mathrm{2}} \:\:+\:\:\mathrm{b}^{\mathrm{2}} \:\:=\:\:\mathrm{2} \\ $$$$\mathrm{then},\:\:\:\:\:\mathrm{a}^{\mathrm{11}} \:\:+\:\:\mathrm{b}^{\mathrm{11}} \:\:=\:\:?? \\ $$
Answered by mr W last updated on 13/Aug/24
$${p}_{\mathrm{1}} ={e}_{\mathrm{1}} =\mathrm{1} \\ $$$${p}_{\mathrm{1}} ^{\mathrm{2}} =\mathrm{2}+\mathrm{2}{e}_{\mathrm{2}} =\mathrm{1}\:\Rightarrow{e}_{\mathrm{2}} =−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${p}_{{n}} ={e}_{\mathrm{1}} {p}_{{n}−\mathrm{1}} −{e}_{\mathrm{2}} {p}_{{n}−\mathrm{2}} \\ $$$${p}_{{n}} −{p}_{{n}−\mathrm{1}} −\frac{{p}_{{n}−\mathrm{2}} }{\mathrm{2}}=\mathrm{0} \\ $$$${r}^{\mathrm{2}} −{r}−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$$\Rightarrow{r}=\frac{\mathrm{1}\pm\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\Rightarrow{p}_{{n}} ={a}^{{n}} +{b}^{{n}} =\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{{n}} +\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{{n}} \\ $$$${a}^{\mathrm{11}} +{b}^{\mathrm{11}} =\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{11}} +\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{11}} =\frac{\mathrm{989}}{\mathrm{32}} \\ $$
Commented by Tawa11 last updated on 13/Aug/24
$$\mathrm{Wow}.\:\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{appreciate}. \\ $$
Answered by mr W last updated on 13/Aug/24
$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}=\left({a}+{b}\right)^{\mathrm{2}} \:\Rightarrow{ab}=\frac{\mathrm{1}^{\mathrm{2}} −\mathrm{2}}{\mathrm{2}}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left({a}+{b}\right)^{\mathrm{3}} ={a}^{\mathrm{3}} +{b}^{\mathrm{3}} +\mathrm{3}{ab}\left({a}+{b}\right)\: \\ $$$$\Rightarrow{a}^{\mathrm{3}} +{b}^{\mathrm{3}} =\mathrm{1}^{\mathrm{3}} −\mathrm{3}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)×\mathrm{1}=\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} \right)\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)={a}^{\mathrm{5}} +{b}^{\mathrm{5}} +\left({ab}\right)^{\mathrm{2}} \left({a}+{b}\right) \\ $$$$\Rightarrow{a}^{\mathrm{5}} +{b}^{\mathrm{5}} =\frac{\mathrm{5}}{\mathrm{2}}×\mathrm{2}−\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} ×\mathrm{1}=\frac{\mathrm{19}}{\mathrm{4}} \\ $$$$\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} \right)^{\mathrm{2}} ={a}^{\mathrm{6}} +{b}^{\mathrm{6}} +\mathrm{2}\left({ab}\right)^{\mathrm{3}} \\ $$$$\Rightarrow{a}^{\mathrm{6}} +{b}^{\mathrm{6}} =\left(\frac{\mathrm{5}}{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{2}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} =\frac{\mathrm{13}}{\mathrm{2}} \\ $$$$\left({a}^{\mathrm{5}} +{b}^{\mathrm{5}} \right)\left({a}^{\mathrm{6}} +{b}^{\mathrm{6}} \right)={a}^{\mathrm{11}} +{b}^{\mathrm{11}} +\left({ab}\right)^{\mathrm{5}} \left({a}+{b}\right) \\ $$$$\Rightarrow{a}^{\mathrm{11}} +{b}^{\mathrm{11}} =\frac{\mathrm{19}}{\mathrm{4}}×\frac{\mathrm{13}}{\mathrm{2}}−\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{5}} ×\mathrm{1}=\frac{\mathrm{989}}{\mathrm{32}}\:\checkmark \\ $$
Commented by Tawa11 last updated on 13/Aug/24
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{appreciate}. \\ $$
Answered by ajfour last updated on 14/Aug/24
$${a}\left(\mathrm{1}+{t}\right)=\mathrm{1} \\ $$$${a}^{\mathrm{2}} \left(\mathrm{1}+{t}^{\mathrm{2}} \right)=\mathrm{2} \\ $$$${a}^{\mathrm{11}} \left(\mathrm{1}+{t}^{\mathrm{11}} \right)={x} \\ $$$${t}=\frac{{b}}{{a}}=\mathrm{2}{ab}+\mathrm{2}=\mathrm{1}\:\:\:\Rightarrow\:\:{ab}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${a}^{\mathrm{2}} {t}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${a}^{\mathrm{2}} \left(\mathrm{1}+{t}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\frac{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{{t}}=−\mathrm{2} \\ $$$$\Rightarrow\:\:\:{t}^{\mathrm{2}} +\mathrm{4}{t}+\mathrm{4}=\mathrm{3} \\ $$$${t}=−\mathrm{2}\pm\sqrt{\mathrm{3}} \\ $$$${a}=\frac{\mathrm{1}}{\mathrm{1}+{t}} \\ $$$${a}^{\mathrm{11}} +{b}^{\mathrm{11}} =\frac{\mathrm{1}+\left(−\mathrm{2}\pm\sqrt{\mathrm{3}}\right)^{\mathrm{11}} }{\left(−\mathrm{1}\pm\sqrt{\mathrm{3}}\right)^{\mathrm{11}} } \\ $$
Commented by Tawa11 last updated on 14/Aug/24
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{appreciate}. \\ $$