Menu Close

if-the-roots-of-the-equation-x-2-k-1-x-k-0-are-and-find-the-value-of-the-real-constant-k-for-which-2-




Question Number 210574 by ChantalYah last updated on 13/Aug/24
if the roots of the equation   x^2 +(k+1)x+k=0  are α and β,   find the value of the   real constant k for  which α=2β
iftherootsoftheequationx2+(k+1)x+k=0areαandβ,findthevalueoftherealconstantkforwhichα=2β
Answered by mr W last updated on 13/Aug/24
α+β=−(k+1) ⇒3β=−(k+1)  αβ=k ⇒2β^2 =k  ⇒2(−((k+1)/3))^2 =k  ⇒2k^2 −5k+2=0  ⇒(k−2)(2k−1)=0  ⇒k=2, (1/2) ✓
α+β=(k+1)3β=(k+1)αβ=k2β2=k2(k+13)2=k2k25k+2=0(k2)(2k1)=0k=2,12
Answered by Rasheed.Sindhi last updated on 13/Aug/24
Another way  Roots are 2β and β   { (((2β)^2 +(k+1)(2β)+k=0)),((β^2 +(k+1)β+k=0)) :}    { ((4β^2 +2(k+1)β+k=0...(i))),((β^2 +(k+1)β+k=0...(ii))) :}   (i)−(ii): 3β^2 +(k+1)β=0            3β+k+1=0  ; β≠0           β=−((k+1)/3)  4(ii)−(i): 2(k+1)β+3k=0  β=−((k+1)/3) ⇒2(k+1)(−((k+1)/3))+3k=0  −2(k+1)^2 +9k=0  2(k+1)^2 −9k=0  2k^2 −5k+2=0  (k−2)(2k−1)=0  k=2,(1/2)
AnotherwayRootsare2βandβ{(2β)2+(k+1)(2β)+k=0β2+(k+1)β+k=0{4β2+2(k+1)β+k=0(i)β2+(k+1)β+k=0(ii)(i)(ii):3β2+(k+1)β=03β+k+1=0;β0β=k+134(ii)(i):2(k+1)β+3k=0β=k+132(k+1)(k+13)+3k=02(k+1)2+9k=02(k+1)29k=02k25k+2=0(k2)(2k1)=0k=2,12
Answered by Rasheed.Sindhi last updated on 13/Aug/24
Still another way  x^2 +(k+1)x+k=0  x^2 +kx+x+k=0  x(x+k)+(x+k)=0  (x+k)(x+1)=0  x=−k ∨ x=−1  −k=2(−1) ∨ −1=2(−k)  k=2 ∨ k=(1/2)
Stillanotherwayx2+(k+1)x+k=0x2+kx+x+k=0x(x+k)+(x+k)=0(x+k)(x+1)=0x=kx=1k=2(1)1=2(k)k=2k=12

Leave a Reply

Your email address will not be published. Required fields are marked *