Question Number 210639 by ChantalYah last updated on 14/Aug/24
$${given}\:{that}\:{the}\:{roots} \\ $$$$\:{of}\:{the}\:{equation} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} −\left(\mathrm{4}+\mathrm{2}{k}\right){x}+\mathrm{2}{k}=\mathrm{0} \\ $$$${are}\:\alpha\:{and}\:\beta \\ $$$${find}\:{the}\:{value}\:{of}\:{k} \\ $$$${for}\:{which}\:\beta=\mathrm{3}\alpha \\ $$
Answered by Rasheed.Sindhi last updated on 14/Aug/24
$$\alpha+\beta=\alpha+\mathrm{3}\alpha=\mathrm{4}\alpha=\frac{\mathrm{4}+\mathrm{2}{k}}{\mathrm{3}}\Rightarrow\alpha^{\mathrm{2}} =\left(\frac{\mathrm{2}+{k}}{\mathrm{6}}\right)^{\mathrm{2}} \\ $$$$\alpha\beta=\alpha.\mathrm{3}\alpha=\mathrm{3}\alpha^{\mathrm{2}} =\frac{\mathrm{2}{k}}{\mathrm{3}}\Rightarrow\alpha^{\mathrm{2}} =\frac{\mathrm{2}{k}}{\mathrm{9}} \\ $$$$\left(\frac{\mathrm{2}+{k}}{\mathrm{6}}\right)^{\mathrm{2}} =\frac{\mathrm{2}{k}}{\mathrm{9}} \\ $$$$\frac{{k}^{\mathrm{2}} +\mathrm{4}{k}+\mathrm{4}}{\mathrm{4}}=\mathrm{2}{k} \\ $$$${k}^{\mathrm{2}} −\mathrm{4}{k}+\mathrm{4}=\mathrm{0} \\ $$$$\left({k}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{0}\Rightarrow{k}=\mathrm{2} \\ $$
Answered by mm1342 last updated on 14/Aug/24
$$\mathrm{3}\left({x}−\alpha\right)\left({x}−\mathrm{3}\alpha\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{3}{x}^{\mathrm{2}} −\mathrm{12}\alpha{x}+\mathrm{9}\alpha^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\mathrm{4}+\mathrm{2}{k}=\mathrm{12}\alpha\:\:\&\:\:\mathrm{2}{k}=\mathrm{9}\alpha^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{9}\alpha^{\mathrm{2}} −\mathrm{12}\alpha+\mathrm{4}=\mathrm{0} \\ $$$$\Rightarrow\alpha=\frac{\mathrm{2}}{\mathrm{3}}\Rightarrow{k}=\mathrm{2}\:\checkmark\: \\ $$$$ \\ $$
Answered by Rasheed.Sindhi last updated on 14/Aug/24
$$\begin{cases}{\mathrm{3}\alpha^{\mathrm{2}} −\left(\mathrm{4}+\mathrm{2}{k}\right)\alpha+\mathrm{2}{k}=\mathrm{0}}\\{\mathrm{3}\left(\mathrm{3}\alpha\right)^{\mathrm{2}} −\left(\mathrm{4}+\mathrm{2}{k}\right)\left(\mathrm{3}\alpha\right)+\mathrm{2}{k}=\mathrm{0}}\end{cases}\: \\ $$$$\begin{cases}{\mathrm{3}\alpha^{\mathrm{2}} −\left(\mathrm{4}+\mathrm{2}{k}\right)\alpha+\mathrm{2}{k}=\mathrm{0}…\left({i}\right)}\\{\mathrm{27}\alpha^{\mathrm{2}} −\mathrm{3}\left(\mathrm{4}+\mathrm{2}{k}\right)\alpha+\mathrm{2}{k}=\mathrm{0}…\left({ii}\right)}\end{cases}\: \\ $$$$\left({ii}\right)−\left({i}\right):\:\mathrm{24}\alpha^{\mathrm{2}} −\mathrm{2}\left(\mathrm{4}+\mathrm{2}{k}\right)\alpha=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{12}\alpha−\left(\mathrm{4}+\mathrm{2}{k}\right)=\mathrm{0}\:;\:\alpha\neq\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\alpha=\frac{\mathrm{2}+{k}}{\mathrm{6}} \\ $$$$\left({ii}\right)−\mathrm{9}\left({i}\right):\:\mathrm{6}\left(\mathrm{4}+\mathrm{2}{k}\right)\alpha−\mathrm{16}{k}=\mathrm{0} \\ $$$$\:\:\:\:\:\mathrm{6}\left(\mathrm{4}+\mathrm{2}{k}\right)\left(\frac{\mathrm{2}+{k}}{\mathrm{6}}\right)−\mathrm{16}{k}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\left(\mathrm{2}+{k}\right)^{\mathrm{2}} −\mathrm{8}{k}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:{k}^{\mathrm{2}} −\mathrm{4}{k}+\mathrm{4}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\left({k}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{0}\Rightarrow{k}=\mathrm{2} \\ $$