Menu Close

given-that-the-roots-of-the-equation-3x-2-4-2k-x-2k-0-are-and-find-the-value-of-k-for-which-3-




Question Number 210639 by ChantalYah last updated on 14/Aug/24
given that the roots   of the equation  3x^2 −(4+2k)x+2k=0  are α and β  find the value of k  for which β=3α
giventhattherootsoftheequation3x2(4+2k)x+2k=0areαandβfindthevalueofkforwhichβ=3α
Answered by Rasheed.Sindhi last updated on 14/Aug/24
α+β=α+3α=4α=((4+2k)/3)⇒α^2 =(((2+k)/6))^2   αβ=α.3α=3α^2 =((2k)/3)⇒α^2 =((2k)/9)  (((2+k)/6))^2 =((2k)/9)  ((k^2 +4k+4)/4)=2k  k^2 −4k+4=0  (k−2)^2 =0⇒k=2
α+β=α+3α=4α=4+2k3α2=(2+k6)2αβ=α.3α=3α2=2k3α2=2k9(2+k6)2=2k9k2+4k+44=2kk24k+4=0(k2)2=0k=2
Answered by mm1342 last updated on 14/Aug/24
3(x−α)(x−3α)=0  ⇒3x^2 −12αx+9α^2 =0  ⇒4+2k=12α  &  2k=9α^2   ⇒9α^2 −12α+4=0  ⇒α=(2/3)⇒k=2 ✓
3(xα)(x3α)=03x212αx+9α2=04+2k=12α&2k=9α29α212α+4=0α=23k=2
Answered by Rasheed.Sindhi last updated on 14/Aug/24
 { ((3α^2 −(4+2k)α+2k=0)),((3(3α)^2 −(4+2k)(3α)+2k=0)) :}    { ((3α^2 −(4+2k)α+2k=0...(i))),((27α^2 −3(4+2k)α+2k=0...(ii))) :}   (ii)−(i): 24α^2 −2(4+2k)α=0               12α−(4+2k)=0 ; α≠0                 α=((2+k)/6)  (ii)−9(i): 6(4+2k)α−16k=0       6(4+2k)(((2+k)/6))−16k=0         (2+k)^2 −8k=0         k^2 −4k+4=0        (k−2)^2 =0⇒k=2
{3α2(4+2k)α+2k=03(3α)2(4+2k)(3α)+2k=0{3α2(4+2k)α+2k=0(i)27α23(4+2k)α+2k=0(ii)(ii)(i):24α22(4+2k)α=012α(4+2k)=0;α0α=2+k6(ii)9(i):6(4+2k)α16k=06(4+2k)(2+k6)16k=0(2+k)28k=0k24k+4=0(k2)2=0k=2

Leave a Reply

Your email address will not be published. Required fields are marked *