Menu Close

prove-that-p-n-is-integer-n-Z-p-n-3n-7-7n-3-11n-21-




Question Number 210666 by universe last updated on 15/Aug/24
  prove that p(n) is integer ∀ n∈Z     p(n) = ((3n^7 +7n^3 +11n)/(21))
provethatp(n)isintegernZp(n)=3n7+7n3+11n21
Answered by A5T last updated on 15/Aug/24
Let f(n)=3n^7 +7n^3 +11n=n(3n^6 +7n^2 +11)  Note that when 7∣n, then 7∣f(n)  So, when (7,n)=1⇒n^6 ≡1(mod 7)  ⇒f(n)≡n(3+11)=14n≡0(mod 7)⇒7∣f(n)  Similarly when 3∣n,then 3∣f(n)  when (3,n)=1⇒n^2 ≡1(mod 7)⇒n^6 ≡1(mod 7)  ⇒f(n)≡n(3+7+11)=21n≡0(mod 3)⇒3∣f(n)  ⇒21∣f(n)⇒p(n)=((f(n))/(21))∈Z
Letf(n)=3n7+7n3+11n=n(3n6+7n2+11)Notethatwhen7n,then7f(n)So,when(7,n)=1n61(mod7)f(n)n(3+11)=14n0(mod7)7f(n)Similarlywhen3n,then3f(n)when(3,n)=1n21(mod7)n61(mod7)f(n)n(3+7+11)=21n0(mod3)3f(n)21f(n)p(n)=f(n)21Z
Commented by universe last updated on 15/Aug/24
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *