Menu Close

Question-210667




Question Number 210667 by mr W last updated on 15/Aug/24
Answered by ajfour last updated on 16/Aug/24
let C be origin  and A(p,q)  q=(p/( (√3)))  q=p−a  0−q=m(2a−p)  ⇒  m=−(q/(2a−p))=−(q/(p−2q))=−(1/( (√3)−2))  tan θ_? =−(2+(√3))  θ_? =π−tan^(−1) (2+(√3))
$${let}\:{C}\:{be}\:{origin}\:\:{and}\:{A}\left({p},{q}\right) \\ $$$${q}=\frac{{p}}{\:\sqrt{\mathrm{3}}} \\ $$$${q}={p}−{a} \\ $$$$\mathrm{0}−{q}={m}\left(\mathrm{2}{a}−{p}\right) \\ $$$$\Rightarrow\:\:{m}=−\frac{{q}}{\mathrm{2}{a}−{p}}=−\frac{{q}}{{p}−\mathrm{2}{q}}=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}−\mathrm{2}} \\ $$$$\mathrm{tan}\:\theta_{?} =−\left(\mathrm{2}+\sqrt{\mathrm{3}}\right) \\ $$$$\theta_{?} =\pi−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}+\sqrt{\mathrm{3}}\right) \\ $$
Commented by mr W last updated on 16/Aug/24
��
Answered by A5T last updated on 15/Aug/24
Commented by A5T last updated on 15/Aug/24
((sin30°)/y)=((sin(150°−?))/(2x))⇒sin(150°−?)=(x/y)  ((sin45°)/y)=((sin(135°−?))/x)⇒sin(135°−?)=(x/y)×sin45°  ⇒((sin(135°−?))/(sin(150°−?)))=sin45°=((sin(45°+?))/(sin(30°+?)))  ⇒?=105°
$$\frac{{sin}\mathrm{30}°}{{y}}=\frac{{sin}\left(\mathrm{150}°−?\right)}{\mathrm{2}{x}}\Rightarrow{sin}\left(\mathrm{150}°−?\right)=\frac{{x}}{{y}} \\ $$$$\frac{{sin}\mathrm{45}°}{{y}}=\frac{{sin}\left(\mathrm{135}°−?\right)}{{x}}\Rightarrow{sin}\left(\mathrm{135}°−?\right)=\frac{{x}}{{y}}×{sin}\mathrm{45}° \\ $$$$\Rightarrow\frac{{sin}\left(\mathrm{135}°−?\right)}{{sin}\left(\mathrm{150}°−?\right)}={sin}\mathrm{45}°=\frac{{sin}\left(\mathrm{45}°+?\right)}{{sin}\left(\mathrm{30}°+?\right)} \\ $$$$\Rightarrow?=\mathrm{105}° \\ $$
Commented by mr W last updated on 15/Aug/24
��
Answered by mr W last updated on 15/Aug/24
Commented by mr W last updated on 15/Aug/24
?=60+45=105°
$$?=\mathrm{60}+\mathrm{45}=\mathrm{105}° \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *