Menu Close

How-many-real-solutions-does-the-equation-x-sin3x-have-




Question Number 210702 by depressiveshrek last updated on 17/Aug/24
How many real solutions does the  equation x=sin3x have?
Howmanyrealsolutionsdoestheequationx=sin3xhave?
Answered by Frix last updated on 17/Aug/24
x=sin 3x  t=3x  (t/3)=sin t  t_1 =0  −1≤(t/3)≤1  −3≤t≤3  sin t ≥0 ⇒ 0≤t≤π; π>3  ⇒ 1 solution for t∈(0, 3]        1 solution for t∈[−3, 0)  ⇒ 3 solutions      (t/n)=sin t  −n≤t≤n  sin t ≥0 ⇒ 2kπ≤t≤(2k+1)π  First time more than 3 solutions possible  at n=7  −7≤t≤7  0≤t≤π∨2π≤t≤3π  but in fact (t/7)>sin t; 2π≤t    n=8 ⇒ (t/8)=sin t has 7 solutions
x=sin3xt=3xt3=sintt1=01t313t3sint00tπ;π>31solutionfort(0,3]1solutionfort[3,0)3solutionstn=sintntnsint02kπt(2k+1)πFirsttimemorethan3solutionspossibleatn=77t70tπ2πt3πbutinfactt7>sint;2πtn=8t8=sinthas7solutions
Answered by mr W last updated on 17/Aug/24
say 3x=t, the equation becomes   (t/3)=sin t. let′s generall look at the  equation kx=sin x.   we see x=0 is always a root. besides  due to symmetry if x=a is a root,   then x=−a is also a root. therefore  the number of roots is always odd.  due to symmetry we only need to  treat k≥0. for x=0, sin x=0 has  infinite roots. so now we take k>0.
say3x=t,theequationbecomest3=sint.letsgeneralllookattheequationkx=sinx.weseex=0isalwaysaroot.besidesduetosymmetryifx=aisaroot,thenx=aisalsoaroot.thereforethenumberofrootsisalwaysodd.duetosymmetryweonlyneedtotreatk0.forx=0,sinx=0hasinfiniteroots.sonowwetakek>0.
Commented by mr W last updated on 17/Aug/24
Commented by mr W last updated on 17/Aug/24
(kx)′=(sin x)′   ⇒k=cos x=(√(1−k^2 x^2 )) ⇒x=(√((1/k^2 )−1))  2(n−1)π<x<(2(n−1)+(1/2))π  4(n−1)^2 π^2 <x^2 <4(n−(3/4))^2 π^2   4(n−1)^2 π^2 +1<(1/k_n ^2 )<4(n−(3/4))^2 π^2 +1  (1/( (√(4(n−(3/4))^2 π^2 +1))))<k_n <(1/( (√(4(n−1)^2 π^2 +1))))  k_n =cos (√((1/k_n ^2 )−1))  this equation has infinite solutions:  k_1 , k_2 , k_3 , ...  k_1 =1  k_2 ≈(1/(7.789706))  k_3 ≈(1/(14.101695))  k_4 ≈(1/(20.395833))  ......  at x=0: k=k_1 =1.   if k≥k_1 =1, there is one root x=0.  if k<k_1 =1, there are at least 3 roots.    generally  for k=k_n  there are 4n−3 roots  for k_(n+1) <k<k_n  there are 4n−1 roots    back to the original question with  x=sin 3x.  it is the same as (x/3)=sin x  since k=(1/3)<k_1 , >k_2  ⇒it has 3 roots.
(kx)=(sinx)k=cosx=1k2x2x=1k212(n1)π<x<(2(n1)+12)π4(n1)2π2<x2<4(n34)2π24(n1)2π2+1<1kn2<4(n34)2π2+114(n34)2π2+1<kn<14(n1)2π2+1kn=cos1kn21thisequationhasinfinitesolutions:k1,k2,k3,k1=1k217.789706k3114.101695k4120.395833atx=0:k=k1=1.ifkk1=1,thereisonerootx=0.ifk<k1=1,thereareatleast3roots.generallyfork=knthereare4n3rootsforkn+1<k<knthereare4n1rootsbacktotheoriginalquestionwithx=sin3x.itisthesameasx3=sinxsincek=13<k1,>k2ithas3roots.

Leave a Reply

Your email address will not be published. Required fields are marked *