Question Number 210723 by universe last updated on 17/Aug/24
$$\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{region}\:\mathrm{between}\:\mathrm{the}\: \\ $$$$\mathrm{planes}\:\mathrm{x}+\mathrm{y}+\mathrm{2z}=\mathrm{2}\:\mathrm{and}\:\mathrm{2x}+\mathrm{y}+\mathrm{z}\:=\:\mathrm{4}\:\mathrm{in}\: \\ $$$$\mathrm{the}\:\mathrm{first}\:\mathrm{octant}\:\mathrm{is} \\ $$
Answered by mr W last updated on 17/Aug/24
$${V}=\frac{\mathrm{1}}{\mathrm{6}}\left(\mathrm{2}×\mathrm{4}×\mathrm{4}−\mathrm{2}×\mathrm{2}×\mathrm{1}\right)=\frac{\mathrm{14}}{\mathrm{3}} \\ $$
Commented by universe last updated on 17/Aug/24
$${sir}\:{can}\:{u}\:{explain}\:{your}\:{method}\:{little}\:{bit} \\ $$$${and}\:{how}\:{tw}\:{solve}\:{by}\:{integration}\:{method} \\ $$
Commented by mr W last updated on 17/Aug/24
Commented by mr W last updated on 17/Aug/24
$${the}\:{eqn}.\:{of}\:{blue}\:{plane}\:{is} \\ $$$$\frac{\boldsymbol{{x}}}{\boldsymbol{{a}}}+\frac{\boldsymbol{{y}}}{\boldsymbol{{b}}}+\frac{\boldsymbol{{z}}}{\boldsymbol{{c}}}=\mathrm{1} \\ $$$${the}\:{volume}\:{under}\:{the}\:{plane}\:{is} \\ $$$${V}_{\mathrm{1}} =\frac{{ab}}{\mathrm{2}}×\frac{{c}}{\mathrm{3}}=\frac{{abc}}{\mathrm{6}} \\ $$$${similarly}\:{the}\:{volume}\:{under}\:{the} \\ $$$${red}\:{plane}\:\frac{\boldsymbol{{x}}}{\boldsymbol{{p}}}+\frac{\boldsymbol{{y}}}{\boldsymbol{{q}}}+\frac{\boldsymbol{{z}}}{\boldsymbol{{r}}}=\mathrm{1}\:{is} \\ $$$${V}_{\mathrm{2}} =\frac{{pqr}}{\mathrm{6}} \\ $$$${the}\:{volume}\:{between}\:{blue}\:{plane}\:{and} \\ $$$${red}\:{plane}\:{is} \\ $$$${V}={V}_{\mathrm{1}} −{V}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{6}}\left({abc}−{pqr}\right). \\ $$$${in}\:{this}\:{example}\:{the}\:{red}\:{plane}\:{is} \\ $$$${x}+{y}+\mathrm{2}{z}=\mathrm{2},\:{i}.{e}.\:\frac{{x}}{\mathrm{2}}+\frac{{y}}{\mathrm{2}}+{z}=\mathrm{1} \\ $$$${and}\:{the}\:{blue}\:{plane}\:{is}\: \\ $$$$\mathrm{2}{x}+{y}+{z}=\mathrm{4},\:{i}.{e}.\:\frac{{x}}{\mathrm{2}}+\frac{{y}}{\mathrm{4}}+\frac{{z}}{\mathrm{4}}=\mathrm{1}. \\ $$$${therefore} \\ $$$${V}=\frac{\mathrm{1}}{\mathrm{6}}\left(\mathrm{2}×\mathrm{4}×\mathrm{4}−\mathrm{2}×\mathrm{2}×\mathrm{1}\right)=\frac{\mathrm{14}}{\mathrm{3}} \\ $$
Commented by mr W last updated on 18/Aug/24
Commented by mr W last updated on 18/Aug/24
$${there}\:{is}\:{no}\:{need}\:{to}\:{apply}\:{integration}. \\ $$
Commented by universe last updated on 18/Aug/24
$${thank}\:{u}\:{sir} \\ $$