Menu Close

Question-210761




Question Number 210761 by mr W last updated on 18/Aug/24
Commented by mr W last updated on 18/Aug/24
find the radius R of the largest sphere  which can be placed between the red  and blue planes in the first octant.  assume 0<p≤a, 0<q≤b, 0<r≤c.
$${find}\:{the}\:{radius}\:{R}\:{of}\:{the}\:{largest}\:{sphere} \\ $$$${which}\:{can}\:{be}\:{placed}\:{between}\:{the}\:{red} \\ $$$${and}\:{blue}\:{planes}\:{in}\:{the}\:{first}\:{octant}. \\ $$$${assume}\:\mathrm{0}<{p}\leqslant{a},\:\mathrm{0}<{q}\leqslant{b},\:\mathrm{0}<{r}\leqslant{c}. \\ $$
Commented by mahdipoor last updated on 18/Aug/24
planes is not infinity ?
$${planes}\:{is}\:{not}\:{infinity}\:? \\ $$
Commented by mr W last updated on 18/Aug/24
the sphere must completely lie in  the first octant and between the  two planes. i.e. the sphere must  lie inside a region bounded by 5  planes.
$${the}\:{sphere}\:{must}\:{completely}\:{lie}\:{in} \\ $$$${the}\:{first}\:{octant}\:{and}\:{between}\:{the} \\ $$$${two}\:{planes}.\:{i}.{e}.\:{the}\:{sphere}\:{must} \\ $$$${lie}\:{inside}\:{a}\:{region}\:{bounded}\:{by}\:\mathrm{5} \\ $$$${planes}. \\ $$
Commented by mr W last updated on 19/Aug/24
the question is equivalent to following  question: find the radius of the  largest sphere which can be cut  from following solid object:
$${the}\:{question}\:{is}\:{equivalent}\:{to}\:{following} \\ $$$${question}:\:{find}\:{the}\:{radius}\:{of}\:{the} \\ $$$${largest}\:{sphere}\:{which}\:{can}\:{be}\:{cut} \\ $$$${from}\:{following}\:{solid}\:{object}: \\ $$
Commented by mr W last updated on 19/Aug/24
Commented by ajfour last updated on 25/Aug/24
Commented by mr W last updated on 27/Aug/24
please check my approach in Q211058
$${please}\:{check}\:{my}\:{approach}\:{in}\:{Q}\mathrm{211058} \\ $$
Answered by BHOOPENDRA last updated on 18/Aug/24
R=min((p/2) ,(q/2),(r/2))  This would be the the radius that  can be placed between the two planes  i got this Mr.W  .  i wrote the eqution of the red &blue  planes for the positioning of sphere  the largest sphere that can fit between  these planes is equidistance from   both planes.The radius R of this   sphere will be equal to shortest distnce  between two planes divided by 2.  If this is correct Ans then i can   do further calculations.
$${R}={min}\left(\frac{{p}}{\mathrm{2}}\:,\frac{{q}}{\mathrm{2}},\frac{{r}}{\mathrm{2}}\right) \\ $$$${This}\:{would}\:{be}\:{the}\:{the}\:{radius}\:{that} \\ $$$${can}\:{be}\:{placed}\:{between}\:{the}\:{two}\:{planes} \\ $$$${i}\:{got}\:{this}\:{Mr}.{W}\:\:. \\ $$$${i}\:{wrote}\:{the}\:{eqution}\:{of}\:{the}\:{red}\:\&{blue} \\ $$$${planes}\:{for}\:{the}\:{positioning}\:{of}\:{sphere} \\ $$$${the}\:{largest}\:{sphere}\:{that}\:{can}\:{fit}\:{between} \\ $$$${these}\:{planes}\:{is}\:{equidistance}\:{from}\: \\ $$$${both}\:{planes}.{The}\:{radius}\:{R}\:{of}\:{this}\: \\ $$$${sphere}\:{will}\:{be}\:{equal}\:{to}\:{shortest}\:{distnce} \\ $$$${between}\:{two}\:{planes}\:{divided}\:{by}\:\mathrm{2}. \\ $$$${If}\:{this}\:{is}\:{correct}\:{Ans}\:{then}\:{i}\:{can}\: \\ $$$${do}\:{further}\:{calculations}. \\ $$
Commented by mr W last updated on 19/Aug/24
i don′t have the solution. if you  think you have a solution, just  post it. thanks!
$${i}\:{don}'{t}\:{have}\:{the}\:{solution}.\:{if}\:{you} \\ $$$${think}\:{you}\:{have}\:{a}\:{solution},\:{just} \\ $$$${post}\:{it}.\:{thanks}! \\ $$
Commented by BHOOPENDRA last updated on 19/Aug/24
Answered by BHOOPENDRA last updated on 19/Aug/24
Red plane  (x/p)+(y/q)+(z/r)=1  Normal vector n_1 ^→ =((1/p),(1/q),(1/r))Or   (A_1 ,B_1 ,C_1 ,D_1 )  for the blue plane  (x/a)+(y/b)+(z/c)=1  Normal vector n_2 ^→ =((1/a),(1/b),(1/c)) Or  (A_2 ,B_2 ,C_2 ,D_2 )  the distnace between two planes  Ax+By+Cz=D_1  &Ax+By+Cz=D_2    d=((∣D_1 −D_2 ∣)/( (√(A^2 +B^2 +C^2 ))))  R=minmum distnace between planes(1/2)  If the planes are far from each other  Second  R=min((p/2),(q/2),(r/2)) or((a/2),(b/2),(c/2))  Assuming the sphere is centered  at midpoint between the planes.And  planes are parellel to each other.
$${Red}\:{plane} \\ $$$$\frac{{x}}{{p}}+\frac{{y}}{{q}}+\frac{{z}}{{r}}=\mathrm{1} \\ $$$${Normal}\:{vector}\:\overset{\rightarrow} {{n}}_{\mathrm{1}} =\left(\frac{\mathrm{1}}{{p}},\frac{\mathrm{1}}{{q}},\frac{\mathrm{1}}{{r}}\right){Or}\: \\ $$$$\left({A}_{\mathrm{1}} ,{B}_{\mathrm{1}} ,{C}_{\mathrm{1}} ,{D}_{\mathrm{1}} \right) \\ $$$${for}\:{the}\:{blue}\:{plane} \\ $$$$\frac{{x}}{{a}}+\frac{{y}}{{b}}+\frac{{z}}{{c}}=\mathrm{1} \\ $$$${Normal}\:{vector}\:\overset{\rightarrow} {{n}}_{\mathrm{2}} =\left(\frac{\mathrm{1}}{{a}},\frac{\mathrm{1}}{{b}},\frac{\mathrm{1}}{{c}}\right)\:{Or} \\ $$$$\left({A}_{\mathrm{2}} ,{B}_{\mathrm{2}} ,{C}_{\mathrm{2}} ,{D}_{\mathrm{2}} \right) \\ $$$${the}\:{distnace}\:{between}\:{two}\:{planes} \\ $$$${Ax}+{By}+{Cz}={D}_{\mathrm{1}} \:\&{Ax}+{By}+{Cz}={D}_{\mathrm{2}} \\ $$$$\:{d}=\frac{\mid{D}_{\mathrm{1}} −{D}_{\mathrm{2}} \mid}{\:\sqrt{{A}^{\mathrm{2}} +{B}^{\mathrm{2}} +{C}^{\mathrm{2}} }} \\ $$$${R}={minmum}\:{distnace}\:{between}\:{planes}\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${If}\:{the}\:{planes}\:{are}\:{far}\:{from}\:{each}\:{other} \\ $$$${Second} \\ $$$${R}={min}\left(\frac{{p}}{\mathrm{2}},\frac{{q}}{\mathrm{2}},\frac{{r}}{\mathrm{2}}\right)\:{or}\left(\frac{{a}}{\mathrm{2}},\frac{{b}}{\mathrm{2}},\frac{{c}}{\mathrm{2}}\right) \\ $$$${Assuming}\:{the}\:{sphere}\:{is}\:{centered} \\ $$$${at}\:{midpoint}\:{between}\:{the}\:{planes}.{And} \\ $$$${planes}\:{are}\:{parellel}\:{to}\:{each}\:{other}. \\ $$$$ \\ $$$$ \\ $$
Commented by mr W last updated on 19/Aug/24
only when two planes are parallel,   we can speak of the “distance”   between two planes. in general  case, the two planes are not parallel  to each other, and we can place a  infinitely large sphere between  them. but since the sphere must  lie in the first octant, the size of  the sphere is limited.  besides we can see, when p,q,r are  very small, the radius of the sphere  is only dependent from a,b,c.  your solution seems not to be   correct.
$${only}\:{when}\:{two}\:{planes}\:{are}\:{parallel},\: \\ $$$${we}\:{can}\:{speak}\:{of}\:{the}\:“{distance}''\: \\ $$$${between}\:{two}\:{planes}.\:{in}\:{general} \\ $$$${case},\:{the}\:{two}\:{planes}\:{are}\:{not}\:{parallel} \\ $$$${to}\:{each}\:{other},\:{and}\:{we}\:{can}\:{place}\:{a} \\ $$$${infinitely}\:{large}\:{sphere}\:{between} \\ $$$${them}.\:{but}\:{since}\:{the}\:{sphere}\:{must} \\ $$$${lie}\:{in}\:{the}\:{first}\:{octant},\:{the}\:{size}\:{of} \\ $$$${the}\:{sphere}\:{is}\:{limited}. \\ $$$${besides}\:{we}\:{can}\:{see},\:{when}\:{p},{q},{r}\:{are} \\ $$$${very}\:{small},\:{the}\:{radius}\:{of}\:{the}\:{sphere} \\ $$$${is}\:{only}\:{dependent}\:{from}\:{a},{b},{c}. \\ $$$${your}\:{solution}\:{seems}\:{not}\:{to}\:{be}\: \\ $$$${correct}. \\ $$
Commented by BHOOPENDRA last updated on 19/Aug/24
You are right Mr.W  i considered   planes are parallel.
$${You}\:{are}\:{right}\:{Mr}.{W}\:\:{i}\:{considered}\: \\ $$$${planes}\:{are}\:{parallel}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *