Question Number 210820 by Ghisom last updated on 19/Aug/24
$$\mathrm{prove} \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{\mathrm{arctan}\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}\:{dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$
Answered by BHOOPENDRA last updated on 20/Aug/24
$${I}=\int_{\mathrm{0}} ^{\infty} \frac{{arctan}\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left(\sqrt{\left.{x}^{\mathrm{2}} +\mathrm{2}\right)}\right.}\:{dx} \\ $$$${Using}\:{Feyman}\:{integration}\: \\ $$$${I}\left(\alpha\right)=\int_{\mathrm{0}} ^{\infty} \frac{{arctan}\alpha\left(\sqrt{\left.{x}^{\mathrm{2}} +\mathrm{2}\right)}\right.}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}\right.}\:{dx} \\ $$$${I}'\left(\alpha\right)=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}\right)}\:\:\partial_{\boldsymbol{\alpha}} \:{arctan}\left(\alpha\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}\right) \\ $$$$\:\:\:\:=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left(\alpha^{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{2}\alpha^{\mathrm{2}} +\mathrm{1}\right)}\:{dx} \\ $$$$\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left[\int_{\mathrm{0}} ^{\infty} \frac{\frac{\mathrm{1}}{\mathrm{1}+\alpha^{\mathrm{2}} }}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\:{dx}−\:\int_{\mathrm{0}} ^{\infty} \frac{\alpha^{\mathrm{2}} /\left(\mathrm{1}+\alpha^{\mathrm{2}} \right)}{\left(\alpha^{\mathrm{2}} {x}^{\mathrm{2}} +{x}^{\mathrm{2}} +\left(\mathrm{2}\alpha^{\mathrm{2}} +\mathrm{1}\right)\right.}{dx}\right]{d}\alpha \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\left(\mathrm{1}+\alpha^{\mathrm{2}} \right)}\left[\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}−\frac{\alpha^{\mathrm{2}} }{\alpha^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{{x}^{\mathrm{2}} +\left(\sqrt{\frac{\mathrm{2}\alpha^{\mathrm{2}} +\mathrm{1}}{\alpha^{\mathrm{2}} }}\right)^{\mathrm{2}} }\right]{d}\alpha \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+\alpha^{\mathrm{2}} }\left[\frac{\pi}{\mathrm{2}}−\left(\frac{\pi}{\mathrm{2}}×\frac{\alpha}{\:\sqrt{\mathrm{2}\alpha^{\mathrm{2}} +\mathrm{1}}}\right)\right] \\ $$$$=\frac{\pi}{\mathrm{2}}\left[\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+\alpha^{\mathrm{2}} }{d}\alpha−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\alpha}{\left(\mathrm{1}+\alpha^{\mathrm{2}} \right)\left(\sqrt{\mathrm{2}\alpha^{\mathrm{2}} +\mathrm{1}}\right)}{d}\alpha\right] \\ $$$$=\frac{\pi}{\mathrm{2}}\left[\frac{\pi}{\mathrm{4}}\:−\frac{\pi}{\mathrm{12}}\right] \\ $$$$=\frac{\pi×\mathrm{2}\pi}{\mathrm{2}×\mathrm{12}} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$
Commented by Ghisom last updated on 20/Aug/24
$$\mathrm{thank}\:\mathrm{you} \\ $$
Answered by BHOOPENDRA last updated on 20/Aug/24
$${This}\:{can}\:{also}\:{be}\:{solved}\:{by}\:{complex}\:{residues} \\ $$