Menu Close

prove-0-arctan-x-2-2-x-2-1-x-2-2-dx-pi-2-12-




Question Number 210820 by Ghisom last updated on 19/Aug/24
prove  ∫_0 ^∞  ((arctan (√(x^2 +2)))/((x^2 +1)(√(x^2 +2)))) dx=(π^2 /(12))
prove0arctanx2+2(x2+1)x2+2dx=π212
Answered by BHOOPENDRA last updated on 20/Aug/24
I=∫_0 ^∞ ((arctan(√(x^2 +2)))/((x^2 +1)((√(x^2 +2))))) dx  Using Feyman integration   I(α)=∫_0 ^∞ ((arctanα((√(x^2 +2))))/((x^2 +1)((√(x^2 +2)))) dx  I′(α)=∫_0 ^∞ (1/((x^2 +1)((√(x^2 +2)))))  ∂_𝛂  arctan(α(√(x^2 +2)))      =∫_0 ^∞ (1/((x^2 +1)(α^2 x^2 +2α^2 +1))) dx   = ∫_0 ^1 [∫_0 ^∞ ((1/(1+α^2 ))/((1+x^2 ))) dx− ∫_0 ^∞ ((α^2 /(1+α^2 ))/((α^2 x^2 +x^2 +(2α^2 +1)))dx]dα  =∫_0 ^1 (1/((1+α^2 )))[∫_0 ^∞ (1/(1+x^2 ))dx−(α^2 /α^2 )∫_0 ^∞ (dx/(x^2 +((√((2α^2 +1)/α^2 )))^2 ))]dα  =∫_0 ^1 (1/(1+α^2 ))[(π/2)−((π/2)×(α/( (√(2α^2 +1)))))]  =(π/2)[∫_0 ^1 (1/(1+α^2 ))dα−∫_0 ^1 (α/((1+α^2 )((√(2α^2 +1)))))dα]  =(π/2)[(π/4) −(π/(12))]  =((π×2π)/(2×12))  =(π^2 /(12))
I=0arctanx2+2(x2+1)(x2+2)dxUsingFeymanintegrationI(α)=0arctanα(x2+2)(x2+1)(x2+2dxI(α)=01(x2+1)(x2+2)αarctan(αx2+2)=01(x2+1)(α2x2+2α2+1)dx=01[011+α2(1+x2)dx0α2/(1+α2)(α2x2+x2+(2α2+1)dx]dα=011(1+α2)[011+x2dxα2α20dxx2+(2α2+1α2)2]dα=0111+α2[π2(π2×α2α2+1)]=π2[0111+α2dα01α(1+α2)(2α2+1)dα]=π2[π4π12]=π×2π2×12=π212
Commented by Ghisom last updated on 20/Aug/24
thank you
thankyou
Answered by BHOOPENDRA last updated on 20/Aug/24
This can also be solved by complex residues
Thiscanalsobesolvedbycomplexresidues

Leave a Reply

Your email address will not be published. Required fields are marked *