Question Number 210843 by peter frank last updated on 20/Aug/24
Answered by Spillover last updated on 20/Aug/24
$${let}\:{u},{v}\:{be}\:{a}\:{two}\:{unit}\:{vectors}\:{with}\:{direction} \\ $$$${cosine}\:\left({l}_{\mathrm{1}\:} ,{m}_{\mathrm{1}} ,{n}_{\mathrm{1}} \right)\:{and}\:\left({l}_{\mathrm{2}\:} ,{m}_{\mathrm{2}} ,{n}_{\mathrm{2}} \right)\:{respectively} \\ $$$$\mathrm{cos}\:\theta=\frac{{u}.{v}}{\mid{u}\mid\mid{v}\mid} \\ $$$${u}=\left({l}_{\mathrm{1}\:} ,{m}_{\mathrm{1}} ,{n}_{\mathrm{1}} \right)\:\:\:\:\:{v}=\left({l}_{\mathrm{2}\:} ,{m}_{\mathrm{2}} ,{n}_{\mathrm{2}} \right) \\ $$$${u}.{v}=\left({l}_{\mathrm{1}} {l}_{\mathrm{2}\:} +{m}_{\mathrm{1}} {m}_{\mathrm{2}} +{n}_{\mathrm{1}} {n}_{\mathrm{2}} \right) \\ $$$$\mid{u}\mid=\mid{v}\mid=\mathrm{1}\:\:\left({unit}\:{vector}\right) \\ $$$$\mathrm{cos}\:\theta=\frac{{u}.{v}}{\mid{u}\mid\mid{v}\mid} \\ $$$$\mathrm{cos}\:\theta={l}_{\mathrm{1}} {l}_{\mathrm{2}\:} +{m}_{\mathrm{1}} {m}_{\mathrm{2}} +{n}_{\mathrm{1}} {n}_{\mathrm{2}} \\ $$$$\mid{u}×{v}\mid=\mid{u}\mid\mid{v}\mid\mathrm{sin}\:\theta\:\:\:\:\:\:\:\mid{u}×{v}\mid=\mathrm{sin}\:\theta \\ $$$${u}×{v}=\begin{vmatrix}{{i}}&{{j}}&{{k}}\\{{l}_{\mathrm{1}} }&{{m}_{\mathrm{1}} }&{{n}_{\mathrm{1}} }\\{{l}_{\mathrm{2}} }&{{n}_{\mathrm{1}} }&{{n}_{\mathrm{2}} }\end{vmatrix} \\ $$$${u}×{v}=\left({m}_{\mathrm{1}} {n}_{\mathrm{2}} −{m}_{\mathrm{2}} {n}_{\mathrm{1}} \right){i}+\left({n}_{\mathrm{1}} {l}_{\mathrm{2}} −{n}_{\mathrm{2}} {l}_{\mathrm{1}} \right){j}+\left({l}_{\mathrm{1}} {m}_{\mathrm{2}} −{l}_{\mathrm{2}} {m}_{\mathrm{1}} \right){k} \\ $$$$\mid{u}×{v}\mid=\mathrm{sin}\:\theta=\sqrt{\left({m}_{\mathrm{1}} {n}_{\mathrm{2}} −{m}_{\mathrm{2}} {n}_{\mathrm{1}} \right)^{\mathrm{2}} +\left({n}_{\mathrm{1}} {l}_{\mathrm{2}} −{n}_{\mathrm{2}} {l}_{\mathrm{1}} \right)^{\mathrm{2}} +\left({l}_{\mathrm{1}} {m}_{\mathrm{2}} −{l}_{\mathrm{2}} {m}_{\mathrm{1}} \right)^{\mathrm{2}} }\: \\ $$$$\mathrm{sin}\:\theta=\sqrt{\left({m}_{\mathrm{1}} {n}_{\mathrm{2}} −{m}_{\mathrm{2}} {n}_{\mathrm{1}} \right)^{\mathrm{2}} +\left({n}_{\mathrm{1}} {l}_{\mathrm{2}} −{n}_{\mathrm{2}} {l}_{\mathrm{1}} \right)^{\mathrm{2}} +\left({l}_{\mathrm{1}} {m}_{\mathrm{2}} −{l}_{\mathrm{2}} {m}_{\mathrm{1}} \right)^{\mathrm{2}} }\: \\ $$$$\mathrm{sin}\:^{\mathrm{2}} \theta=\left({m}_{\mathrm{1}} {n}_{\mathrm{2}} −{m}_{\mathrm{2}} {n}_{\mathrm{1}} \right)^{\mathrm{2}} +\left({n}_{\mathrm{1}} {l}_{\mathrm{2}} −{n}_{\mathrm{2}} {l}_{\mathrm{1}} \right)^{\mathrm{2}} +\left({l}_{\mathrm{1}} {m}_{\mathrm{2}} −{l}_{\mathrm{2}} {m}_{\mathrm{1}} \right)^{\mathrm{2}} \\ $$$$ \\ $$