Question Number 210855 by zhou0429 last updated on 20/Aug/24
Answered by Frix last updated on 20/Aug/24
$${x},\:{y}\:>\mathrm{0}\:\wedge\:{x}\neq{y} \\ $$$${x}\mathrm{ln}\:{x}\:={y}\mathrm{ln}\:{y} \\ $$$$\mathrm{Let}\:{y}={px}\wedge{p}>\mathrm{0}\wedge{p}\neq\mathrm{1} \\ $$$${x}\mathrm{ln}\:{x}\:={px}\mathrm{ln}\:{px} \\ $$$$\mathrm{ln}\:{x}\:={p}\mathrm{ln}\:{p}\:+{p}\mathrm{ln}\:{x} \\ $$$$\left(\mathrm{1}−{p}\right)\mathrm{ln}\:{x}\:={p}\mathrm{ln}\:{p} \\ $$$$\frac{\mathrm{ln}\:{x}}{\mathrm{ln}\:{p}}=\frac{{p}}{\mathrm{1}−{p}} \\ $$$$\mathrm{ln}_{{p}} \:{x}\:=\frac{{p}}{\mathrm{1}−{p}} \\ $$$${x}={p}^{\frac{{p}}{\mathrm{1}−{p}}} \\ $$$${y}={p}^{\frac{\mathrm{1}}{\mathrm{1}−{p}}} \\ $$
Commented by zhou0429 last updated on 20/Aug/24
$${so} \\ $$$$ \\ $$
Answered by zhou0429 last updated on 20/Aug/24
$${what} \\ $$$$ \\ $$
Answered by zhou0429 last updated on 20/Aug/24
$${how}?{urgent}.{please}\:\:{write}\:\:{your}\:\: \\ $$$${answers} \\ $$