Question Number 210906 by hardmath last updated on 21/Aug/24
$$\frac{\mathrm{19x}\:−\:\mathrm{x}^{\mathrm{2}} }{\mathrm{x}\:+\:\mathrm{1}}\:\centerdot\:\left(\mathrm{x}\:+\:\frac{\mathrm{19}\:−\:\mathrm{x}}{\mathrm{x}\:+\:\mathrm{1}}\right)\:=\:\mathrm{78} \\ $$$$\mathrm{find}:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$
Answered by Frix last updated on 21/Aug/24
$$\mathrm{Reconstructing}\:\mathrm{your}\:\mathrm{equation}: \\ $$$${x}=\frac{{a}}{\mathrm{2}}\pm\frac{\sqrt{{a}^{\mathrm{2}} −\mathrm{4}{b}}}{\mathrm{2}}\vee{x}=\frac{{b}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{4}{a}−{b}^{\mathrm{2}} }}{\mathrm{2}}\mathrm{i}\:\:\:\:\:\left(\ast\right) \\ $$$$\left({x}^{\mathrm{2}} −{ax}+{b}\right)\left({x}^{\mathrm{2}} −{bx}+{a}\right)=\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} −{ax}+{b}\right)\left({x}^{\mathrm{2}} −{bx}+{a}\right)−{ab}\left({x}+\mathrm{1}\right)^{\mathrm{2}} =−{ab}\left({x}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$${x}\left({x}−\left({a}+{b}\right)\right)\left({x}^{\mathrm{2}} +\left({a}+{b}\right)\right)=−{ab}\left({x}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\frac{{x}\left(\left({a}+{b}\right)−{x}\right)\left({x}^{\mathrm{2}} +\left({a}+{b}\right)\right)}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }={ab} \\ $$$$\frac{\left({a}+{b}\right){x}−{x}^{\mathrm{2}} }{{x}+\mathrm{1}}×\frac{{x}^{\mathrm{2}} +\left({a}+{b}\right)}{{x}+\mathrm{1}}={ab} \\ $$$$\frac{\left({a}+{b}\right){x}−{x}^{\mathrm{2}} }{{x}+\mathrm{1}}×\left({x}+\frac{\left({a}+{b}\right)−{x}}{{x}+\mathrm{1}}\right)={ab} \\ $$$$ \\ $$$${a}=\mathrm{13}\wedge{b}=\mathrm{6} \\ $$$$ \\ $$$$\frac{\mathrm{19}{x}−{x}^{\mathrm{2}} }{{x}+\mathrm{1}}×\left({x}+\frac{\mathrm{19}−{x}}{{x}+\mathrm{1}}\right)=\mathrm{78} \\ $$$$ \\ $$$$ \\ $$$$\left(\ast\right)\:\:\:\:\:{x}=\frac{\mathrm{13}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{145}}}{\mathrm{2}}\vee{x}=\mathrm{3}\pm\mathrm{2i} \\ $$