Question Number 210919 by RojaTaniya last updated on 22/Aug/24
Answered by mr W last updated on 22/Aug/24
$${yes},\:{we}\:{can}\:{design}\:{such}\:{two}\:{dices}. \\ $$$${the}\:{first}\:{one}\:{is}\:{a}\:{normal}\:{die} \\ $$$${with}\:{six}\:{faces}\:{which}\:{have}\:{digit}\: \\ $$$$\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6}\:{respectively}. \\ $$$${the}\:{second}\:{die}\:{is}\:{a}\:{special}\:{die}. \\ $$$${three}\:{faces}\:{from}\:{it}\:{have}\:{digit}\:\mathrm{0} \\ $$$${and}\:{the}\:{other}\:{three}\:{faces}\:{have}\: \\ $$$${digit}\:\mathrm{6}. \\ $$$${when}\:{you}\:{roll}\:{these}\:{two}\:{dices},\:{the} \\ $$$${probability}\:{that}\:{the}\:{sum}\:{of}\:{the} \\ $$$${numbers}\:{appearing}\:{on}\:{their}\:{faces}\: \\ $$$${is}\:{equallly}\:{likely}\:{to}\:{be}\:{any}\:{number} \\ $$$${from}\:\mathrm{1}\:{to}\:\mathrm{12},\:{namely} \\ $$$${p}_{{sum}=\mathrm{1}} ={p}_{{sum}=\mathrm{2}} =…={p}_{{sum}=\mathrm{12}} =\frac{\mathrm{3}}{\mathrm{36}}=\frac{\mathrm{1}}{\mathrm{12}} \\ $$
Commented by mr W last updated on 22/Aug/24
Commented by mr W last updated on 23/Aug/24
$${after}\:{some}\:“{try}\:\&\:{error}''\:{i}\:{came} \\ $$$${to}\:{this}\:{concept}.\:{i}'{m}\:{not}\:{sure}\:{if}\:{there} \\ $$$${are}\:{other}\:{solutions}. \\ $$