Question Number 210996 by RojaTaniya last updated on 25/Aug/24
Answered by Frix last updated on 26/Aug/24
$$\mathrm{Only}\:\mathrm{true}\:\mathrm{for}\:\mathrm{the}\:\mathrm{real}\:\mathrm{solution}\:>\mathrm{0}: \\ $$$${x}^{\mathrm{3}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{5}{x}−\mathrm{1}=\mathrm{0} \\ $$$${x}^{\mathrm{3}} +\mathrm{6}{x}^{\mathrm{2}} +\mathrm{9}{x}=\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{1} \\ $$$${x}\left({x}+\mathrm{3}\right)^{\mathrm{2}} =\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$${x}^{\frac{\mathrm{1}}{\mathrm{2}}} \left({x}+\mathrm{3}\right)=\mathrm{2}{x}+\mathrm{1} \\ $$$${x}^{\frac{\mathrm{3}}{\mathrm{2}}} +\mathrm{3}{x}^{\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{2}{x}+\mathrm{1} \\ $$$${x}=\mathrm{1}−\mathrm{3}{x}^{\frac{\mathrm{1}}{\mathrm{2}}} +\mathrm{3}{x}−{x}^{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$${x}=\left(\mathrm{1}−{x}^{\frac{\mathrm{1}}{\mathrm{2}}} \right)^{\mathrm{3}} \\ $$$${x}^{\frac{\mathrm{1}}{\mathrm{3}}} =\mathrm{1}−{x}^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${x}^{\frac{\mathrm{1}}{\mathrm{2}}} +{x}^{\frac{\mathrm{1}}{\mathrm{3}}} =\mathrm{1} \\ $$
Commented by Rasheed.Sindhi last updated on 26/Aug/24
$$\vee.\:\:\cap\boldsymbol{\mathrm{i}}\subset\in!\:\: \\ $$
Commented by Frix last updated on 26/Aug/24
Answered by Frix last updated on 26/Aug/24
$$\mathrm{Another}\:\mathrm{method},\:\mathrm{not}\:\mathrm{recommended},\:\mathrm{thus} \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{write}\:\mathrm{it}\:\mathrm{out}… \\ $$$$\left({x}^{\mathrm{3}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{5}{x}−\mathrm{1}\right):\left({x}^{\frac{\mathrm{1}}{\mathrm{2}}} +{x}^{\frac{\mathrm{1}}{\mathrm{3}}} −{y}\right) \\ $$$$\left({t}^{\mathrm{18}} +\mathrm{2}{t}^{\mathrm{12}} +\mathrm{5}{t}^{\mathrm{6}} −\mathrm{1}\right):\left({t}^{\mathrm{3}} +{t}^{\mathrm{2}} −{y}\right)= \\ $$$$=\underset{{j}=\mathrm{0}} {\overset{\mathrm{15}} {\sum}}\:\left({c}_{{j}} {t}^{{j}} \right)−\frac{{y}−\mathrm{1}}{{t}^{\mathrm{3}} +{t}^{\mathrm{2}} −{y}}\:\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}} {\sum}}\:\left({d}_{{k}} {t}^{{k}} \right) \\ $$$$\Rightarrow\:{y}=\mathrm{1} \\ $$