Menu Close

Question-211018




Question Number 211018 by peter frank last updated on 26/Aug/24
Commented by peter frank last updated on 27/Aug/24
thank you mr frix
thankyoumrfrix
Answered by Frix last updated on 27/Aug/24
r=ae^(kθ)   x(θ)=ae^(kθ) cos θ  y(θ)=ae^(kθ) sin θ  Length of curve  L (p, q) =∫_p ^q (√((x^• )^2 +(y^• )^2 ))dθ  x^• =((d[x(θ)])/dθ)=ae^(kθ) (kcos θ −sin θ)  y^• =((d[y(θ)])/dθ)=ae^(kθ) (cos θ +ksin θ)  (√((x^• )^2 +(y^• )^2 ))=e^(kθ) ∣a∣(√(k^2 +1))  L (0, 2π) =∣a∣(√(k^2 +1))∫_0 ^(2π) e^(kθ) dθ=  =((∣a∣(√(k^2 +1)))/k)(e^(2kπ) −1)
r=aekθx(θ)=aekθcosθy(θ)=aekθsinθLengthofcurveL(p,q)=qp(x)2+(y)2dθx=d[x(θ)]dθ=aekθ(kcosθsinθ)y=d[y(θ)]dθ=aekθ(cosθ+ksinθ)(x)2+(y)2=ekθak2+1L(0,2π)=∣ak2+12π0ekθdθ==ak2+1k(e2kπ1)
Commented by Frix last updated on 27/Aug/24
I know there′s another formula for the  length of a curve given by r=r(θ) but I  don′t remember it..
Iknowtheresanotherformulaforthelengthofacurvegivenbyr=r(θ)butIdontrememberit..
Commented by Ghisom last updated on 27/Aug/24
L (α, β) =∫_α ^β (√(r^2 +(r^• )^2 ))dθ=       [r=ae^(kθ) ∧r^• =ake^(kθ) ]  =∣a∣(√(k^2 +1))∫_0 ^(2π) e^(kθ) dθ  ...
L(α,β)=βαr2+(r)2dθ=[r=aekθr=akekθ]=∣ak2+12π0ekθdθ
Commented by Frix last updated on 27/Aug/24
��

Leave a Reply

Your email address will not be published. Required fields are marked *