Menu Close

Question-211029




Question Number 211029 by BaliramKumar last updated on 26/Aug/24
Answered by Ar Brandon last updated on 26/Aug/24
f(2)=5 therefore f(x) must be a non-zero polynomial.  Let f(x)=a_0 +a_1 x+a_2 x^2 +∙∙∙+a_n x^n , a_n ≠0  Suppose f(x)+f((1/x))=f(x)f((1/x)) for all x≠0  Then Σ_(r=0) ^n a_r x^r +Σ_(r=1) ^n (a_r /x^r )=(Σ_(r=0) ^n a_r x^r )(Σ_(r=1) ^n (a_r /x^r ))  Multiplying through by x^n ,  Σ_(r=0) ^n a_r x^(n+r) +Σ_(r=0) ^n a_r x^(n−r) =(Σ_(r=0) ^n a_r x^r )(Σ_(r=0) ^n a_r x^(n−r) )  That is,  (a_0 x^n +a_1 x^(n+1) +∙∙∙a_n x^(2n) )+(a_0 x^n +a_1 x^(n−1) +∙∙∙+a_(n−1) x+a_n )        =(a_0 +a_1 x+∙∙∙a_n x^n )(a_0 x^n +a_1 x^(n−1) +∙∙∙+a_(n−1) x+a_n )  Equating the corresponding coefficients of powers of x,  we have           a_n =a_0 a_n , a_(n−1) =a_0 a_(n−1) +a_1 a_n            a_(n−2) =a_2 a_n +a_1 a_(n−1) +a_(n−2) a_0            2a_0 =a_0 ^2 +a_n ^2             a_n =a_0 a_n ⇒a_0 =1 (since a_n ≠0)            a_(n−1) =a_0 a_(n−1) +a_1 a_n ⇒a_1 a_n =0⇒a_1 =0            a_(n−2) =a_2 a_n +a_1 a_(n−1) +a_(n−2) a_0 ⇒a_(n−2) =a_2 a_n +a_(n−2) ⇒a_2 =0  Continuing this process, we get a_(n−1) =0 and 2=1+a_n ^2 .  Hence a_n =±1. Therefore                                                  f(x)=1±x^n   But f(2)=5 hence                                    5=1±2^n   Therefore f(x) cannot be 1−x^n . Thus, f(x)=1+x^n  and  5=1+2^n  ⇒ n=2. So f(x)=1+x^2  and  determinant (((f(3)=10))).
f(2)=5thereforef(x)mustbeanonzeropolynomial.Letf(x)=a0+a1x+a2x2++anxn,an0Supposef(x)+f(1x)=f(x)f(1x)forallx0Thennr=0arxr+nr=1arxr=(nr=0arxr)(nr=1arxr)Multiplyingthroughbyxn,nr=0arxn+r+nr=0arxnr=(nr=0arxr)(nr=0arxnr)Thatis,(a0xn+a1xn+1+anx2n)+(a0xn+a1xn1++an1x+an)=(a0+a1x+anxn)(a0xn+a1xn1++an1x+an)Equatingthecorrespondingcoefficientsofpowersofx,wehavean=a0an,an1=a0an1+a1anan2=a2an+a1an1+an2a02a0=a02+an2an=a0ana0=1(sincean0)an1=a0an1+a1ana1an=0a1=0an2=a2an+a1an1+an2a0an2=a2an+an2a2=0Continuingthisprocess,wegetan1=0and2=1+an2.Hencean=±1.Thereforef(x)=1±xnButf(2)=5hence5=1±2nThereforef(x)cannotbe1xn.Thus,f(x)=1+xnand5=1+2nn=2.Sof(x)=1+x2andf(3)=10.
Commented by Frix last updated on 26/Aug/24
��
Commented by Ar Brandon last updated on 26/Aug/24
Greetings, Sir! it's been quite a long time��
Commented by BaliramKumar last updated on 27/Aug/24
Thanks sir
Thankssir
Commented by Ar Brandon last updated on 27/Aug/24
You're welcome!
Answered by Frix last updated on 26/Aug/24
We know 3 things:       (1) f(x)f((1/x))=f(x)+f((1/x)) for all x∈R       (2) f(2)=5  ((1) ⇒ f((1/x))=((f(x))/(f(x)+1))) ∧ (2) ⇒       (3) f((1/2))=(5/4)  ⇒ we can have 3 unknowns ⇒ we have a  polynomial of degree 2 ⇒  f(x)=ax^2 +bx+c    (2) 4a+2b+c=5  (3) (a/4)+(b/2)+c=(5/4)  ⇒ b=−((5(a−1))/2)∧a=c    Insert into (1) & transform  c^2 −((2(x^2 −5x+1))/((x−2)(2x−1)))c−((5x)/((x−2)(2x−1)))=0  ⇒ c=1∨c=−((5x)/((x−2)(2x−1)))  Since c is a constant which must be valid  for all x∈R  ⇒ c=1  ⇒ a=1∧b=0  ⇒  f(x)=x^2 +1  f(3)=10
Weknow3things:(1)f(x)f(1x)=f(x)+f(1x)forallxR(2)f(2)=5((1)f(1x)=f(x)f(x)+1)(2)(3)f(12)=54wecanhave3unknownswehaveapolynomialofdegree2f(x)=ax2+bx+c(2)4a+2b+c=5(3)a4+b2+c=54b=5(a1)2a=cInsertinto(1)&transformc22(x25x+1)(x2)(2x1)c5x(x2)(2x1)=0c=1c=5x(x2)(2x1)SincecisaconstantwhichmustbevalidforallxRc=1a=1b=0f(x)=x2+1f(3)=10
Commented by BaliramKumar last updated on 27/Aug/24
Thanks sir
Thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *