Menu Close

dx-xln-x-ln-ln-x-1-ln-ln-x-2-ln-ln-x-3-ln-ln-x-4-




Question Number 211151 by Spillover last updated on 29/Aug/24
    ∫(dx/(xln x(ln ln x−1)(ln ln x−2)(ln ln x−3)(ln ln x−4)))
$$ \\ $$$$ \\ $$$$\int\frac{{dx}}{{x}\mathrm{ln}\:{x}\left(\mathrm{ln}\:\mathrm{ln}\:{x}−\mathrm{1}\right)\left(\mathrm{ln}\:\mathrm{ln}\:{x}−\mathrm{2}\right)\left(\mathrm{ln}\:\mathrm{ln}\:{x}−\mathrm{3}\right)\left(\mathrm{ln}\:\mathrm{ln}\:{x}−\mathrm{4}\right)} \\ $$$$ \\ $$$$ \\ $$
Answered by Ghisom last updated on 30/Aug/24
let t=ln ln x → dx xln x dt  ∫(dt/(Π_(j=1) ^4  (t−j)))=  ...  =−(1/6)ln (t−1) +(1/2)ln (t−2) −(1/2)ln (t−3) +(1/6)ln (t−4) =  =(1/6)ln ∣(((t−2)^3 (t−4))/((t−1)(t−3)^3 ))∣ =...
$$\mathrm{let}\:{t}=\mathrm{ln}\:\mathrm{ln}\:{x}\:\rightarrow\:{dx}\:{x}\mathrm{ln}\:{x}\:{dt} \\ $$$$\int\frac{{dt}}{\underset{{j}=\mathrm{1}} {\overset{\mathrm{4}} {\prod}}\:\left({t}−{j}\right)}= \\ $$$$… \\ $$$$=−\frac{\mathrm{1}}{\mathrm{6}}\mathrm{ln}\:\left({t}−\mathrm{1}\right)\:+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({t}−\mathrm{2}\right)\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({t}−\mathrm{3}\right)\:+\frac{\mathrm{1}}{\mathrm{6}}\mathrm{ln}\:\left({t}−\mathrm{4}\right)\:= \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\mathrm{ln}\:\mid\frac{\left({t}−\mathrm{2}\right)^{\mathrm{3}} \left({t}−\mathrm{4}\right)}{\left({t}−\mathrm{1}\right)\left({t}−\mathrm{3}\right)^{\mathrm{3}} }\mid\:=… \\ $$
Commented by Spillover last updated on 31/Aug/24
good
$${good} \\ $$
Answered by Spillover last updated on 31/Aug/24
∫(dx/(xln x(ln ln x−1)(ln ln x−2)(ln ln x−3)(ln ln x−4)))  t=ln ln x    dt=(dx/(xln x))  ∫(dt/((t−1)(t−2)(t−3)(t−4)))    (1/3)∫(((t−2)(t−3)−(t−1)(t−4))/((t−1)(t−2)(t−3)(t−4)))dt    (1/3)[∫(dt/((t−1)(t−4))).(1/2)]−[∫(1/2).(dt/((t−2)(t−3)))]    (1/6)∫(((t−1)−(t−4))/((t−1)(t−4)))−(1/2)[∫((1/(t−3))−(1/(t−2)))dt]    (1/6)ln (((t−4)/(t−1)))+(1/2)ln (((t−2)/(t−3)))    but t=ln ln x    (1/6)ln (((ln ln x−4)/(ln ln x−1)))+(1/2)ln (((ln ln x−2)/(ln ln x−3)))
$$\int\frac{{dx}}{{x}\mathrm{ln}\:{x}\left(\mathrm{ln}\:\mathrm{ln}\:{x}−\mathrm{1}\right)\left(\mathrm{ln}\:\mathrm{ln}\:{x}−\mathrm{2}\right)\left(\mathrm{ln}\:\mathrm{ln}\:{x}−\mathrm{3}\right)\left(\mathrm{ln}\:\mathrm{ln}\:{x}−\mathrm{4}\right)} \\ $$$${t}=\mathrm{ln}\:\mathrm{ln}\:{x}\:\:\:\:{dt}=\frac{{dx}}{{x}\mathrm{ln}\:{x}} \\ $$$$\int\frac{{dt}}{\left({t}−\mathrm{1}\right)\left({t}−\mathrm{2}\right)\left({t}−\mathrm{3}\right)\left({t}−\mathrm{4}\right)} \\ $$$$ \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}\int\frac{\left({t}−\mathrm{2}\right)\left({t}−\mathrm{3}\right)−\left({t}−\mathrm{1}\right)\left({t}−\mathrm{4}\right)}{\left({t}−\mathrm{1}\right)\left({t}−\mathrm{2}\right)\left({t}−\mathrm{3}\right)\left({t}−\mathrm{4}\right)}{dt} \\ $$$$ \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}\left[\int\frac{{dt}}{\left({t}−\mathrm{1}\right)\left({t}−\mathrm{4}\right)}.\frac{\mathrm{1}}{\mathrm{2}}\right]−\left[\int\frac{\mathrm{1}}{\mathrm{2}}.\frac{{dt}}{\left({t}−\mathrm{2}\right)\left({t}−\mathrm{3}\right)}\right] \\ $$$$ \\ $$$$\frac{\mathrm{1}}{\mathrm{6}}\int\frac{\left({t}−\mathrm{1}\right)−\left({t}−\mathrm{4}\right)}{\left({t}−\mathrm{1}\right)\left({t}−\mathrm{4}\right)}−\frac{\mathrm{1}}{\mathrm{2}}\left[\int\left(\frac{\mathrm{1}}{{t}−\mathrm{3}}−\frac{\mathrm{1}}{{t}−\mathrm{2}}\right){dt}\right] \\ $$$$ \\ $$$$\frac{\mathrm{1}}{\mathrm{6}}\mathrm{ln}\:\left(\frac{{t}−\mathrm{4}}{{t}−\mathrm{1}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left(\frac{{t}−\mathrm{2}}{{t}−\mathrm{3}}\right) \\ $$$$ \\ $$$${but}\:{t}=\mathrm{ln}\:\mathrm{ln}\:{x} \\ $$$$ \\ $$$$\frac{\mathrm{1}}{\mathrm{6}}\mathrm{ln}\:\left(\frac{\mathrm{ln}\:\mathrm{ln}\:{x}−\mathrm{4}}{\mathrm{ln}\:\mathrm{ln}\:{x}−\mathrm{1}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left(\frac{\mathrm{ln}\:\mathrm{ln}\:{x}−\mathrm{2}}{\mathrm{ln}\:\mathrm{ln}\:{x}−\mathrm{3}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *