Question Number 211145 by mr W last updated on 29/Aug/24
Commented by mr W last updated on 30/Aug/24
$${thanks}!\:{but}\:{i}\:{think}\:{people}\:{know}\: \\ $$$${what}\:{i}\:{exactly}\:{mean}. \\ $$
Commented by mr W last updated on 29/Aug/24
$${a}\:{corner}\:{of}\:{a}\:{solid}\:{cube}\:{with}\:{edge}\: \\ $$$${length}\:\boldsymbol{{d}}\:{is}\:{chopped}\:{off}\:{as}\:{shown}. \\ $$$${find}\:{the}\:{radius}\:\boldsymbol{{R}}\:{of}\:{the}\:{largest}\: \\ $$$${solid}\:{sphere}\:{which}\:{can}\:{be}\:{cut}\:{from}\: \\ $$$${the}\:{remaining}\:{object}. \\ $$$${assume}\:\mathrm{0}<\boldsymbol{{a}},\:\boldsymbol{{b}},\:\boldsymbol{{c}}\leqslant\boldsymbol{{d}}. \\ $$
Commented by MathematicalUser2357 last updated on 30/Aug/24
$$\mathrm{0}<{a},{b},{c}\leqslant{d}\:\mathrm{is}\:\mathrm{not}\:\mathrm{an}\:\mathrm{equation}\:\mathrm{or}\:\mathrm{logic} \\ $$$$\mathrm{you}\:\mathrm{should}\:\mathrm{say}:\:“\underset{\mathrm{l}\in\left\{{a},{b},{c}\right\}} {\wedge}\left(\mathrm{0}<\mathrm{l}\wedge\mathrm{l}\leqslant{d}\right)'' \\ $$
Answered by mr W last updated on 04/Sep/24
$${say}\:{a},\:{b},\:{c}\:{are}\:{the}\:{x},\:{y},\:{x}\:{axes}. \\ $$$${the}\:{equation}\:{of}\:{the}\:{cross}\:{section}\:{is} \\ $$$$\frac{{x}}{{a}}+\frac{{y}}{{b}}+\frac{{z}}{{c}}=\mathrm{1} \\ $$$${if}\:{no}\:{corner}\:{is}\:{chopped}\:{off},\:{then} \\ $$$${the}\:{largest}\:{sphere}\:{has} \\ $$$${center}\:{at}\:\left(\frac{{d}}{\mathrm{2}},\frac{{d}}{\mathrm{2}},\frac{{d}}{\mathrm{2}}\right)\:{and} \\ $$$${radius}\:{R}={R}_{\mathrm{0}} =\frac{{d}}{\mathrm{2}} \\ $$$${if} \\ $$$$\frac{\frac{{d}}{\mathrm{2}{a}}+\frac{{d}}{\mathrm{2}{b}}+\frac{{d}}{\mathrm{2}{c}}−\mathrm{1}}{\:\sqrt{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}}\geqslant{R}_{\mathrm{0}} =\frac{{d}}{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}−\sqrt{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}\geqslant\frac{\mathrm{2}}{{d}} \\ $$$${R}={R}_{\mathrm{0}} =\frac{{d}}{\mathrm{2}} \\ $$$${otherwise} \\ $$$${case}\:\mathrm{1}:\:{center}\:\left({R}_{\mathrm{1}} ,\:{R}_{\mathrm{1}} ,\:{d}−{R}_{\mathrm{1}} \right),\:{radius}\:{R}_{\mathrm{1}} \\ $$$$\frac{\frac{{R}_{\mathrm{1}} }{{a}}+\frac{{R}_{\mathrm{1}} }{{b}}+\frac{{d}−{R}_{\mathrm{1}} }{{c}}−\mathrm{1}}{\:\sqrt{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}}={R}_{\mathrm{1}} \\ $$$$\Rightarrow\frac{{R}_{\mathrm{1}} }{{d}}=\frac{\frac{\mathrm{1}}{{c}}−\frac{\mathrm{1}}{{d}}}{\:\sqrt{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}−\frac{\mathrm{1}}{{a}}−\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}} \\ $$$${case}\:\mathrm{2}:\:{center}\:\left({d}−{R}_{\mathrm{2}} ,\:{d}−{R}_{\mathrm{2}} ,\:{R}_{\mathrm{2}} \right),\:{radius}\:{R}_{\mathrm{2}} \\ $$$$\frac{\frac{{d}−{R}_{\mathrm{2}} }{{a}}+\frac{{d}−{R}_{\mathrm{2}} }{{b}}+\frac{{R}_{\mathrm{2}} }{{c}}−\mathrm{1}}{\:\sqrt{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}}={R}_{\mathrm{2}} \\ $$$$\Rightarrow\frac{{R}_{\mathrm{2}} }{{d}}=\frac{\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}−\frac{\mathrm{1}}{{d}}}{\:\sqrt{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}+\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}−\frac{\mathrm{1}}{{c}}} \\ $$$${case}\:\mathrm{3}:\:{center}\:\left({d}−{R}_{\mathrm{3}} ,\:{d}−{R}_{\mathrm{3}} ,\:{d}−{R}_{\mathrm{3}} \right),\:{radius}\:{R}_{\mathrm{3}} \\ $$$$\frac{\frac{{d}−{R}_{\mathrm{3}} }{{a}}+\frac{{d}−{R}_{\mathrm{3}} }{{b}}+\frac{{d}−{R}_{\mathrm{3}} }{{c}}−\mathrm{1}}{\:\sqrt{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}}={R}_{\mathrm{3}} \\ $$$$\Rightarrow\frac{{R}_{\mathrm{3}} }{{d}}=\frac{\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}−\frac{\mathrm{1}}{{d}}}{\:\sqrt{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}+\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}} \\ $$$${we}\:{can}\:{show}\:{that}\:{R}_{\mathrm{1}} <{R}_{\mathrm{3}} ,\:{R}_{\mathrm{2}} <{R}_{\mathrm{3}} \\ $$$${that}\:{means}\:{the}\:{radius}\:{of}\:{maximum} \\ $$$${sphere}\:{from}\:{case}\:\mathrm{1}\:{to}\:{case}\:\mathrm{3}\:{is}\:{R}_{\mathrm{3}} . \\ $$