Menu Close

Question-211167




Question Number 211167 by cherokeesay last updated on 30/Aug/24
Commented by Frix last updated on 30/Aug/24
12
$$\mathrm{12} \\ $$
Answered by som(math1967) last updated on 30/Aug/24
Commented by cherokeesay last updated on 30/Aug/24
nice !  thank you sir !
$${nice}\:! \\ $$$${thank}\:{you}\:{sir}\:! \\ $$
Commented by som(math1967) last updated on 30/Aug/24
let AB=x,AD=y  ⇒AE=((18)/y)  ∴BE=x−((18)/y)   CF=((10)/x) ⇒BF=y−((10)/x)   ∴ (x−((18)/y))(y−((10)/x))=8  ⇒xy−10−18+((180)/(xy))=8  ⇒(xy)^2 −36xy+180=0  ⇒(xy−30)(xy−6)=0  ⇒xy=30 [ xy≠6 ∵xy>9]  Orange area=30−(9+5+4)    =12sq unit
$${let}\:{AB}={x},{AD}={y} \\ $$$$\Rightarrow{AE}=\frac{\mathrm{18}}{{y}} \\ $$$$\therefore{BE}={x}−\frac{\mathrm{18}}{{y}} \\ $$$$\:{CF}=\frac{\mathrm{10}}{{x}}\:\Rightarrow{BF}={y}−\frac{\mathrm{10}}{{x}} \\ $$$$\:\therefore\:\left({x}−\frac{\mathrm{18}}{{y}}\right)\left({y}−\frac{\mathrm{10}}{{x}}\right)=\mathrm{8} \\ $$$$\Rightarrow{xy}−\mathrm{10}−\mathrm{18}+\frac{\mathrm{180}}{{xy}}=\mathrm{8} \\ $$$$\Rightarrow\left({xy}\right)^{\mathrm{2}} −\mathrm{36}{xy}+\mathrm{180}=\mathrm{0} \\ $$$$\Rightarrow\left({xy}−\mathrm{30}\right)\left({xy}−\mathrm{6}\right)=\mathrm{0} \\ $$$$\Rightarrow{xy}=\mathrm{30}\:\left[\:{xy}\neq\mathrm{6}\:\because{xy}>\mathrm{9}\right] \\ $$$${Orange}\:{area}=\mathrm{30}−\left(\mathrm{9}+\mathrm{5}+\mathrm{4}\right) \\ $$$$\:\:=\mathrm{12}{sq}\:{unit} \\ $$$$ \\ $$$$ \\ $$
Answered by mr W last updated on 30/Aug/24
A_(orange) =(√((A+B+C)^2 −4AC))      =(√((9+4+5)^2 −4×9×5))=12
$${A}_{{orange}} =\sqrt{\left({A}+{B}+{C}\right)^{\mathrm{2}} −\mathrm{4}{AC}} \\ $$$$\:\:\:\:=\sqrt{\left(\mathrm{9}+\mathrm{4}+\mathrm{5}\right)^{\mathrm{2}} −\mathrm{4}×\mathrm{9}×\mathrm{5}}=\mathrm{12} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *