Menu Close

How-many-integers-are-there-such-that-0-n-720-and-n-2-1-mod-720-




Question Number 211222 by RojaTaniya last updated on 31/Aug/24
How many integers are there     such that,  0≤n≤720 and      n^2 ≡1(mod)720?
Howmanyintegersaretheresuchthat,0n720andn21(mod)720?
Answered by mahdipoor last updated on 31/Aug/24
⇒n^2 =1+720m     ⇒n^2 ≡1  (mod 2) ⇒ n=2k+1  (2k+1)^2 =720m+1⇒4k^2 +4k+1=720m+1⇒  k^2 +k=180m  ⇒k^2 +k≡0   mod 9 ⇒k=9j or 9j+8  ⇒k^2 +k≡0   mod 5 ⇒k=5i or 5i+4  k=9j=5i              ⇒  k=45t  k=9j=5i+4       ⇒  k=45t+9  k=9j+8=5i       ⇒  k=45t+35   k=9j+8=5i+4⇒  k=45t+44  ⇒k^2 +k≡0   mod 4 ⇒k=4i  or  4i+3  k=4i=45t                 ⇒  k=180r  k=4i=45t+9          ⇒  k=180r+144  k=4i=45t+35       ⇒  k=180r+80    k=4i=45t+44       ⇒  k=180r+44  k=4i+3=45t          ⇒  k=180r+135  k=4i+3=45t+9   ⇒  k=180r+99    k=4i+3=45t+35⇒  k=180r+35   k=4i+3=45t+44⇒  k=180r+179  ⇒⇒k=180r+f_n   ⇒n=2k+1=360r+(2f_n +1)=360r+d_n   d_n =1,71,89,161,199,271,289,359     r∈Z  ⇒ 0≤n≤720 ⇒  n=1,71,89,161,199,271,289,359         361,431,449,521,559,631,649,719
n2=1+720mn21(mod2)n=2k+1(2k+1)2=720m+14k2+4k+1=720m+1k2+k=180mk2+k0mod9k=9jor9j+8k2+k0mod5k=5ior5i+4k=9j=5ik=45tk=9j=5i+4k=45t+9k=9j+8=5ik=45t+35k=9j+8=5i+4k=45t+44k2+k0mod4k=4ior4i+3k=4i=45tk=180rk=4i=45t+9k=180r+144k=4i=45t+35k=180r+80k=4i=45t+44k=180r+44k=4i+3=45tk=180r+135k=4i+3=45t+9k=180r+99k=4i+3=45t+35k=180r+35k=4i+3=45t+44k=180r+179⇒⇒k=180r+fnn=2k+1=360r+(2fn+1)=360r+dndn=1,71,89,161,199,271,289,359rZ0n720n=1,71,89,161,199,271,289,359361,431,449,521,559,631,649,719

Leave a Reply

Your email address will not be published. Required fields are marked *