Menu Close

Find-the-number-of-4-digit-numbers-so-that-when-decomposed-into-prime-factors-have-the-sum-of-prime-factors-equal-to-the-sum-of-the-exponents-




Question Number 211250 by RojaTaniya last updated on 01/Sep/24
Find the number of 4 digit numbers   so that when decomposed into prime   factors, have the sum of prime factors   equal to the sum of the exponents?
Findthenumberof4digitnumberssothatwhendecomposedintoprimefactors,havethesumofprimefactorsequaltothesumoftheexponents?
Answered by mr W last updated on 03/Sep/24
say the number is N=p^a q^b r^c ...  1000≤N≤9999  p,q,r,... ∈ P and p<q<r<...  a,b,c,... ∈ N  p+q+r+...=a+b+c+...    (p^a q^b r^c )_(min) =p^(p+q+r−2) q^1 r^1   (p^a q^b r^c )_(max) =p^1 q^1 r^(p+q+r−2)   no solution if   p^(p+q+r−2) q^1 r^1 >9999 or  p^1 q^1 r^(p+q+r−2) <1000    case 1: N=p^a   only one solution: p=a=5  since 3^3 =27<1000, 5^5 =3125, 7^7 =823543>9999  case 2: N=p^a q^b   2^1 3^4 =162<1000 ⇒no solution  2^6 5^1 =320      2^3 5^4 =5000, 2^4 5^3 =2000  2^8 7^1 =1792      2^7 7^2 =6272  2^(12) 11^1 =45056>9999 ⇒no solution  3^7 5^1 =10935>9999 ⇒no solution  case 3: N=p^a q^b r^c   2^8 3^1 5^1 =3840     2^7 3^2 5^1 =5760, 2^7 3^1 5^2 =9600, 2^6 3^3 5^1 =8640  2^(10) 3^1 7^1 =21504>9999 ⇒no solution  case 4: N=p^a q^b r^c s^d   2^(14) 3^1 5^1 7^1 =1720320>9999 ⇒no solutio    summary:  there are 9 such 4−digit numbers:  1792, 2000, 3125, 3840, 5000,   5760, 6272, 8640, 9600
saythenumberisN=paqbrc1000N9999p,q,r,Pandp<q<r<a,b,c,Np+q+r+=a+b+c+(paqbrc)min=pp+q+r2q1r1(paqbrc)max=p1q1rp+q+r2nosolutionifpp+q+r2q1r1>9999orp1q1rp+q+r2<1000case1:N=paonlyonesolution:p=a=5since33=27<1000,55=3125,77=823543>9999case2:N=paqb2134=162<1000nosolution2651=3202354=5000,2453=20002871=17922772=6272212111=45056>9999nosolution3751=10935>9999nosolutioncase3:N=paqbrc283151=3840273251=5760,273152=9600,263351=86402103171=21504>9999nosolutioncase4:N=paqbrcsd214315171=1720320>9999nosolutiosummary:thereare9such4digitnumbers:1792,2000,3125,3840,5000,5760,6272,8640,9600
Commented by Rasheed.Sindhi last updated on 03/Sep/24
Elegant!
Elegant!
Commented by mr W last updated on 03/Sep/24
thanks!  “brute force” approach, not smart,  but effective.
thanks!bruteforceapproach,notsmart,buteffective.
Commented by Rasheed.Sindhi last updated on 03/Sep/24
e^x cellent sir!
excellentsir!

Leave a Reply

Your email address will not be published. Required fields are marked *