Question-211251 Tinku Tara September 1, 2024 Algebra 0 Comments FacebookTweetPin Question Number 211251 by hardmath last updated on 01/Sep/24 Commented by a.lgnaoui last updated on 04/Sep/24 Commented by a.lgnaoui last updated on 05/Sep/24 sinCMN=sinMBC−AB=sinNCD−AD(1)sinC=DFFCif∡D=90thenFC=DF2+CD2sinCBE=sinEBC=ADAE.BC=AD(BE−AB)BCsinC=BE.AD(BE−AB).BCBC−AB=aCD−AD=bMN2=a2+b2−2abcosC(i)(1)⇒sinMsinN=absinCsinM=MNaMN2a2=sin2Csin2M(ii)(i)b2⇒MN2b2=[(ab)2+1−2abcosC(I)I(ii)=a2b2=[(ab)2−2acosCb+1]sin2Msin2CM=∡NMCsinM=absinN(N=∡MnC)orMNsinM=BC−AB)sinCandMNcosM+(BC−AB)cosC=CD−ADdinc{MNsinM=asinCMNcosM=b−acosCtanM=asinCb−acosC1cos2M=1+absin2C(1−abcosC)21sin2M=1+(1−abcosC)2absin2C=absin2C+(1−abcosC)2absin2Csoit(ab)=(ab−2acosCb+1)[absin2C+(1−abcosC)]2soitx=x(1−2cosC)+1[x(1−cos2C)+(1−xcosC)]2posonzcosC=cc−2xc+1=x2(1−c2)2+(1−xc)2+2x(1−c2)(1−xc)=x2(1+c4−/2c2)+1+x/c2−2/xc+2x(1−x/c−c2/+x/c3)=(x2+2x+1)+x2c2(c2−2)−2x2c+2x2c3−2xc−xc2=(x+1)2+x2[c2(c2−2)−2c+2c3]−x(c2+c)=x2(c4+2c3−2c2−2c+1)−x(c2−c−2)−c=0x2−(c2−c−2c4+2c3−2c2−2c+1)x−(cc4+2c3−2c2−2c+1)=0△=c2−c−2)2+4c(c4+2c3−2c2−2c+1)=0c4+c2+4−2c3+4c−4c2+4c5−8c4−8c2+4c=04c5−7c4−2c3−11c2+8c+4=0c=0,838157…andc<0alors:x=−b2a=2+c−c22(c4+2c3−2c2−2c+1)forc=cosC=−0,338468soitC=90+56,97°{2+c−c2=1,1615322(c4+2c3−2c2−2c+1)=1,1706…alorsx=1⇒log2024(BC−ACCD−AD)=0Donc:BC−AC=CD−AD Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-211235Next Next post: Find-the-number-of-4-digit-numbers-so-that-when-decomposed-into-prime-factors-have-the-sum-of-prime-factors-equal-to-the-sum-of-the-exponents- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.