Menu Close

Question-211251




Question Number 211251 by hardmath last updated on 01/Sep/24
Commented by a.lgnaoui last updated on 04/Sep/24
Commented by a.lgnaoui last updated on 05/Sep/24
((sin C)/(MN))=((sin M)/(BC−AB))=((sin N)/(CD−AD))(1)  sin C=((DF)/(FC))  if  ∡D=90  then  FC=(√(DF^2 +CD^2 ))  ((sin C)/(BE))=((sin E)/(BC))    =((AD)/(AE.BC))=((AD)/((BE−AB)BC))    sin C=((BE.AD)/((BE−AB).BC))  BC−AB=a        CD−AD=b    MN^2 =a^2 +b^2 −2abcos C   (i)    (1)⇒ ((sin M)/(sin N ))=(a/b)    ((sin C)/(sin M))=((MN)/a)    ((MN^2 )/a^2 )=((sin^2 C)/(sin^2 M))       (ii)    (((i))/b^2 )⇒  ((MN^2 )/b^2 )=[((a/b))^2 +1−2(a/b)cos C  (I)  (I/((ii)))=(a^2 /b^2 )=(([((a/b))^2 −((2acos C)/b)+1]sin^2 M)/(sin^2 C))    M=∡NMC    sin M=(a/b)sin N(N=∡MnC)  or    MNsin M=BC−AB)sin C  and  MNcos M+(BC−AB)cos C=CD−AD    dinc          { ((MNsin M=asin C)),((MNcos M=b−acos C)) :}       tan M=((asin C)/(b−acos C))       (1/(cos^2 M))=1+(((a/b)sin^2  C)/((1−(a/b)cos C)^2 ))      (1/(sin^2 M))=1+(((1−(a/b)cos C)^2 )/((a/b)sin^2 C))      =(((a/b)sin^2 C+(1−(a/b)cos C)^2 )/((a/b)sin^2 C))  soit    ((a/b))=((((a/b)−((2acos C)/b)+1))/([(a/b)sin^2 C+(1−(a/b)cos C)]^2 ))  soit     x=((x(1−2cos C)+1)/([x(1−cos^2  C)+(1−xcos C)]^2 ))    posonz   cos C=c       c−2xc+1=   x^2 (1−c^2 )^2 +(1−xc)^2 +2x(1−c^2 )(1−xc)    =x^2 (1+c^4 −/2c^2 )+1+x/c^2 −2/xc+  2x(1−x/c−c^2 /+x/c^3 )    =(x^2 +2x+1)+x^2 c^2 (c^2 −2)−2x^2 c  +2x^2 c^3 −2xc−xc^2     =(x+1)^2 +x^2 [c^2 (c^2 −2)−2c+2c^3 ]  −x(c^2 +c)  =  x^2 (c^4 +2c^3 −2c^2 −2c+1)−x(c^2 −c−2)−c=0         x^2 −(((c^2 −c−2)/(c^4 +2c^3 −2c^2 −2c+1)))x−((c/(c^4 +2c^3 −2c^2 −2c+1)))=0    △=c^2 −c−2)^2 +4c(c^4 +2c^3 −2c^2 −2c+1)=0    c^4 +c^2 +4−2c^3 +4c−4c^2 +4c^5 −8c^4   −8c^2 +4c=0       4c^5 −7c^4 −2c^3 −11c^2 +8c+4=0     c=0,838157...  and  c<0  alors:     x=((−b)/(2a))=((2+c−c^2 )/(2(c^4 +2c^3 −2c^2 −2c+1)))    for   c=cosC=−0, 338468    soit  C=90+56,97°     { (( 2+c−c^2 =1,161532)),((   2(c^4 +2c^3 −2c^2 −2c+1)=1,1706...)) :}  alors      x=1   ⇒ log_(2024) (((BC−AC)/(CD−AD)))=0    Donc  :  BC−AC=CD−AD
sinCMN=sinMBCAB=sinNCDAD(1)sinC=DFFCifD=90thenFC=DF2+CD2sinCBE=sinEBC=ADAE.BC=AD(BEAB)BCsinC=BE.AD(BEAB).BCBCAB=aCDAD=bMN2=a2+b22abcosC(i)(1)sinMsinN=absinCsinM=MNaMN2a2=sin2Csin2M(ii)(i)b2MN2b2=[(ab)2+12abcosC(I)I(ii)=a2b2=[(ab)22acosCb+1]sin2Msin2CM=NMCsinM=absinN(N=MnC)orMNsinM=BCAB)sinCandMNcosM+(BCAB)cosC=CDADdinc{MNsinM=asinCMNcosM=bacosCtanM=asinCbacosC1cos2M=1+absin2C(1abcosC)21sin2M=1+(1abcosC)2absin2C=absin2C+(1abcosC)2absin2Csoit(ab)=(ab2acosCb+1)[absin2C+(1abcosC)]2soitx=x(12cosC)+1[x(1cos2C)+(1xcosC)]2posonzcosC=cc2xc+1=x2(1c2)2+(1xc)2+2x(1c2)(1xc)=x2(1+c4/2c2)+1+x/c22/xc+2x(1x/cc2/+x/c3)=(x2+2x+1)+x2c2(c22)2x2c+2x2c32xcxc2=(x+1)2+x2[c2(c22)2c+2c3]x(c2+c)=x2(c4+2c32c22c+1)x(c2c2)c=0x2(c2c2c4+2c32c22c+1)x(cc4+2c32c22c+1)=0=c2c2)2+4c(c4+2c32c22c+1)=0c4+c2+42c3+4c4c2+4c58c48c2+4c=04c57c42c311c2+8c+4=0c=0,838157andc<0alors:x=b2a=2+cc22(c4+2c32c22c+1)forc=cosC=0,338468soitC=90+56,97°{2+cc2=1,1615322(c4+2c32c22c+1)=1,1706alorsx=1log2024(BCACCDAD)=0Donc:BCAC=CDAD

Leave a Reply

Your email address will not be published. Required fields are marked *