Menu Close

a-b-x-b-a-x-2x-solve-for-x-




Question Number 211255 by ajfour last updated on 02/Sep/24
(√(a+(√(b−x))+(√(b−(√(a+x))))))=2x  solve for x.
a+bx+ba+x=2xsolveforx.
Commented by Ghisom last updated on 03/Sep/24
(√(a+(√(b−x))+(√(b−(√(a+x))))))=2x  x=(b−(4x^2 −(√(b−x))−a)^2 )^2 −a  it′s already of 8^(th)  degree and we still have  (√(b−x)) ⇒ it′s of 16^(th)  degree. we can′t solve  for x nor for a. but we can for b:  b=((256x^8 −256ax^6 +32x^5 +96a^2 x^4 −16ax^3 −(16a^3 −1)x^2 +(2a^2 +1)x+a(a^3 +1))/(4(4x^2 −a)^2 ))+(((16x^4 −8ax^2 −x+a^2 )(√(a+x)))/(2(4x^2 −a)^2 ))  [might not always be true because of 3  times squaring]
a+bx+ba+x=2xx=(b(4x2bxa)2)2aitsalreadyof8thdegreeandwestillhavebxitsof16thdegree.wecantsolveforxnorfora.butwecanforb:b=256x8256ax6+32x5+96a2x416ax3(16a31)x2+(2a2+1)x+a(a3+1)4(4x2a)2+(16x48ax2x+a2)a+x2(4x2a)2[mightnotalwaysbetruebecauseof3timessquaring]
Commented by ajfour last updated on 06/Sep/24
(√(a+(√(b−x))))+(√(b−(√(a+x))))=2x  i think i was interested in this! rather
a+bx+ba+x=2xithinkiwasinterestedinthis!rather
Commented by ajfour last updated on 06/Sep/24
let  a+x=p^2   ,  b−x=q^2   p^2 +q^2 =a+b  2x=(p^2 −q^2 )−(a−b)  (√(a+q))+(√(b−p))=p^2 −q^2 −(a−b)  squaring  a+q={2(p^2 −a)−(√(b−p))}^2   a+b−p^2 =[{2(p^2 −a)−(√(b−p))}^2 −a]^2   .....
leta+x=p2,bx=q2p2+q2=a+b2x=(p2q2)(ab)a+q+bp=p2q2(ab)squaringa+q={2(p2a)bp}2a+bp2=[{2(p2a)bp}2a]2..
Answered by a.lgnaoui last updated on 03/Sep/24
4x^2 −a               = (√(b−x)) +(√(b−(√(a+x))))  (4x^2 −a)−(√(b−x)) =(√(b−(√(a+x))))  (4x^2 −a)^2 −x−2(4x^2 −a)(√(b−x)) =  −(√(a+x))    ((4x^2 −a)^2 −x=2(4x^2 −a)(√(b−x)) −(√(a+x))    4x^2 −a)^2 +(√(a+x)) =2(4x^2 −a)(√(b−x))  ((4x^2 −a)/2)+((√(a+x))/(2(4x^2 −a)))=(√(b−x))  (((4x^2 −a)^2 )/4)+((a+x)/(4(4x^2 −a)^2 ))+(((4x^2 −a)(√(a+x)))/2)=b−x    (√(a+x)) =(2/((4x^2 −a)))[b−x−((a+x)/(4(4x^2 −a)^2 ))−(((4x^2 −a)^2 )/4)]    (√(a+x)) =(2/(4x^2 −a))[b−x−((([(a+x)+(4x^2 −a)^4 )/(4(4x^2 −a)^2 )))           =[((2(b−x)(4x^2 −a)−(a+x)−(4x^2 −a)^4 )/((4x^2 −a)^2 ))]  =(([(4x^2 −a)[(b−x)−(4x^2 −a)^3 ])/((4x^2 −a)^2 ))    a+x=(((4x^2 −a)^2 (b−x−(4x^2 −a)^3 )^2 )/((4x^2 −a)^4 ))      (4x^2 −a)^4 (a+x)=  (4x^2 −a)^2 [(b−x)^2 +(4x^2 −a)^6 −2(b−x)(4x^2 −a)^3 ]      (4x^2 −a)^2 (a+x)  =    (b−x)^2 +(4x^2 −a)^6 −2(b−x)(4x^2 −a)^3 ]    (4x^2 −a)^2 (a+x)−(4x^2 −a)^6 +2(b−x)(4x^2 −a)^3   =(b−x)^2     (4x^2 −a)^2 [a+x−(4x^2 −a)^4 +2(b−x)(4x^2 −a)]    =(b−x)^2   [a+x+8bx^2 −2ab−8x^3 +2ax  −(4x^2 −a)^4 =(b−x)^2     (b−x)^2 +(4x^2 −a)^4 =    [(b−x+(4x^2 −a)^2 ]^2 −2(b−x)(4x^2 −a)^2       soit    −8x^3 +8bx^2 +(2a+1)x+a(1−2b)=  b^2 +x^2 −2bx+(16x^4 +a^2 −8ax^2 )^2   +2(b−x)(4x^2 −a)^2     =x^2 −2bx +b^2 +[8x^2 (a+2x^2 )+a^2 ]     +64x^4 (a+2x^2 )^2 +a^4 +16a^2 (a+2x^2 )     +2b−x)(16x^4 +a^2 −8ax^2 )  ⇒  (256+a)x^6 −16x^5 +(64a^2 +32b+8a)x^4 +8(a+1)x^3   (32a^2 −16ab−8)x^2 −(a^2 +2a+1)x+16a^3 +a^4 −a(1−2b)=0      256(1+a)x^6 −16x^5 +8(8a^2 +4b+a)x^4   +8(a+1)x^3 +8(4a^2 −2ab−1)x^2 −(a+1)^2 x  +a^4 +16a^3 −a+2ab=0      (256x^6 −16x^5 +8x^3 −8x^2 −x)+  256ax^6 +8(8a^2 +4b+a)x^4 +8ax^3   +16(2a^2 −ab)x^2 −(a^2 +2a)x+  a^4 +16a^3 −a+2ab=0     { ((256x^5 −16x^4 +8x^2 +8x−1=0)),((8[32ax^6 +(8a^2 +4b+a)x^4 +ax^3 +)) :}  a(4a−b)x^2 −a(a+2)x]+  a(a^3 +26a^2 −1+2b)=0       { ((x=0,112166986...  and imsg(x)                   (1))),((8ax(32x^5 +x^2 +(4a−b)x−(a+2)=0(2))) :}  •3   a^3 +16a^2 +2b−1=0      1•    x=  2et 3•     { ((32x^5 +x^2 +(4a−b)x=a+2)),((   a^3 +16a^2 +2b−1     =0)) :}    a^2 (a+16)=1−2b     b=((1−a^2 (a+16))/2)  4a−b=((a^2 (a+16)+8a−1)/2)  (2)⇒  32x^5 +x^2 +((a^2 (a+16)+8a−1)/2)x=a+2  we change x by  x_0 =0,1121167.  ⇒we bave  equation   with a as unconnu  then  we found   a   and b   (exept Ereur in the Calcul)
4x2a=bx+ba+x(4x2a)bx=ba+x(4x2a)2x2(4x2a)bx=a+x((4x2a)2x=2(4x2a)bxa+x4x2a)2+a+x=2(4x2a)bx4x2a2+a+x2(4x2a)=bx(4x2a)24+a+x4(4x2a)2+(4x2a)a+x2=bxa+x=2(4x2a)[bxa+x4(4x2a)2(4x2a)24]a+x=24x2a[bx([(a+x)+(4x2a)44(4x2a)2)=[2(bx)(4x2a)(a+x)(4x2a)4(4x2a)2]=[(4x2a)[(bx)(4x2a)3](4x2a)2a+x=(4x2a)2(bx(4x2a)3)2(4x2a)4(4x2a)4(a+x)=(4x2a)2[(bx)2+(4x2a)62(bx)(4x2a)3](4x2a)2(a+x)=(bx)2+(4x2a)62(bx)(4x2a)3](4x2a)2(a+x)(4x2a)6+2(bx)(4x2a)3=(bx)2(4x2a)2[a+x(4x2a)4+2(bx)(4x2a)]=(bx)2[a+x+8bx22ab8x3+2ax(4x2a)4=(bx)2(bx)2+(4x2a)4=[(bx+(4x2a)2]22(bx)(4x2a)2soit8x3+8bx2+(2a+1)x+a(12b)=b2+x22bx+(16x4+a28ax2)2+2(bx)(4x2a)2=x22bx+b2+[8x2(a+2x2)+a2]+64x4(a+2x2)2+a4+16a2(a+2x2)+2bx)(16x4+a28ax2)(256+a)x616x5+(64a2+32b+8a)x4+8(a+1)x3(32a216ab8)x2(a2+2a+1)x+16a3+a4a(12b)=0256(1+a)x616x5+8(8a2+4b+a)x4+8(a+1)x3+8(4a22ab1)x2(a+1)2x+a4+16a3a+2ab=0(256x616x5+8x38x2x)+256ax6+8(8a2+4b+a)x4+8ax3+16(2a2ab)x2(a2+2a)x+a4+16a3a+2ab=0{256x516x4+8x2+8x1=08[32ax6+(8a2+4b+a)x4+ax3+a(4ab)x2a(a+2)x]+a(a3+26a21+2b)=0{x=0,112166986andimsg(x)(1)8ax(32x5+x2+(4ab)x(a+2)=0(2)3a3+16a2+2b1=01x=2et3{32x5+x2+(4ab)x=a+2a3+16a2+2b1=0a2(a+16)=12bb=1a2(a+16)24ab=a2(a+16)+8a12(2)32x5+x2+a2(a+16)+8a12x=a+2wechangexbyx0=0,1121167.webaveequationwithaasunconnuthenwefoundaandb(exeptEreurintheCalcul)
Commented by Ghisom last updated on 03/Sep/24
some steps are not clear and I don′t think  your result holds.
somestepsarenotclearandIdontthinkyourresultholds.

Leave a Reply

Your email address will not be published. Required fields are marked *