Menu Close

Prove-in-AB-C-cosA-sin-2-A-cosB-sin-2-B-cosC-sin-2-C-r-R-r-incircle-radius-R-circumcircle-radius-




Question Number 211276 by mnjuly1970 last updated on 04/Sep/24
    Prove , in AB^Δ C  :          ((cosA)/(sin^2 A)) + ((cosB)/(sin^2 B))  +((cosC)/(sin^2 C)) ≥ (r/R)                r : incircle  radius       R: circumcircle  radius
Prove,inABCΔ:cosAsin2A+cosBsin2B+cosCsin2CrRr:incircleradiusR:circumcircleradius
Answered by Ghisom last updated on 04/Sep/24
r=(a/(cot (β/2) +cot (γ/2))); cyclic for a, b, c & α, β, γ  ⇒ sum these up and use γ=π−(α+β)  and let u=tan α ∧ v=tan β  to get  3r=(((1−uv)v)/(1+v^2 ))a+(((1−uv)u)/(1+u^2 ))b+((uv)/(u+v))c  R=(a/(2sin α)); cyclic for a, b, c & α, β, γ  again sum these up to get  3R=((1+u^2 )/(4u))a+((1+v^2 )/(4u))b+(((1+u^2 )(1+v^2 ))/(4(u+v)(1−uv)))c  ⇒  (r/R)=((4(1−uv)uv)/((1+u^2 )(1+v^2 )))  ⇒  (r/R)=cos α +cos β −cos (α+β)_(=cos γ)  −1  ⇒ (r/R)=cos α +cos β +cos γ −1  [0<(r/R)≤(1/2)]    in any triangle 0<θ<π ⇒ 0<sin θ <1 ⇒  ((cos θ)/(sin^2  θ))≥cos θ  ⇒ Σ ((cos θ)/(sin^2  θ)) ≥(Σ cos θ)−1    [  what′s left to prove:  2≤((cos α)/(sin^2  α))+((cos β)/(sin^2  β))−((cos (α+β))/(sin^2  (α+β)))  because of symmetry there should be a  min/max at α=β=(π/3)  ]
r=acotβ2+cotγ2;cyclicfora,b,c&α,β,γsumtheseupanduseγ=π(α+β)andletu=tanαv=tanβtoget3r=(1uv)v1+v2a+(1uv)u1+u2b+uvu+vcR=a2sinα;cyclicfora,b,c&α,β,γagainsumtheseuptoget3R=1+u24ua+1+v24ub+(1+u2)(1+v2)4(u+v)(1uv)crR=4(1uv)uv(1+u2)(1+v2)rR=cosα+cosβcos(α+β)=cosγ1rR=cosα+cosβ+cosγ1[0<rR12]inanytriangle0<θ<π0<sinθ<1cosθsin2θcosθΣcosθsin2θ(Σcosθ)1[whatslefttoprove:2cosαsin2α+cosβsin2βcos(α+β)sin2(α+β)becauseofsymmetrythereshouldbeamin/maxatα=β=π3]
Commented by mnjuly1970 last updated on 04/Sep/24
thanks alot sir Ghisom   gratefu  ⋛
thanksalotsirGhisomgratefu
Commented by Ghisom last updated on 04/Sep/24
I found another way to end my proof...
Ifoundanotherwaytoendmyproof
Commented by Frix last updated on 04/Sep/24
Nice.
Nice.
Answered by mahdipoor last updated on 05/Sep/24
h(A,B,C)=A+B+C=180  f(A,B,C)=((cosA)/(sin^2 A))+((cosB)/(sin^2 B))+((cosC)/(sin^2 C))  2R=(a/(sinA))=(b/(sinB))=(c/(sinC))  S=r((a+b+c)/2)=((ba)/2)sinC⇒  r((a+((sinB)/(sinA))a+((sinC)/(sinA))a)/2)=((((sinB)/(sinA))a×a)/2)sinC⇒  r=((a×sinB×sinC)/(sinA+sinB+sinC))  g(A,B,C)=(r/R)=2×((sinA×sinB×sinC)/(sinA+sinB+sinC))   { (((∂f/∂x_i )=λ(∂f/∂x_i ))),((h=180)) :}  ⇒f_(min) =f(60,60,60)=2⇒2≤f≤∞   { (((∂g/∂x_i )=λ(∂g/∂x_i ))),((h=180)) :}  ⇒g_(max) =g(60,60,60)=(1/2)⇒0≤g≤(1/2)  ⇒g≤(1/2)<2≤f ⇒  g<f
h(A,B,C)=A+B+C=180f(A,B,C)=cosAsin2A+cosBsin2B+cosCsin2C2R=asinA=bsinB=csinCS=ra+b+c2=ba2sinCra+sinBsinAa+sinCsinAa2=sinBsinAa×a2sinCr=a×sinB×sinCsinA+sinB+sinCg(A,B,C)=rR=2×sinA×sinB×sinCsinA+sinB+sinC{fxi=λfxih=180fmin=f(60,60,60)=22f{gxi=λgxih=180gmax=g(60,60,60)=120g12g12<2fg<f
Commented by mnjuly1970 last updated on 04/Sep/24
thanks alot sir..
thanksalotsir..
Commented by Frix last updated on 04/Sep/24
Error: R=(a/(2sin A)) etc.
Error:R=a2sinAetc.
Commented by Ghisom last updated on 04/Sep/24
line 3: R=(a/(2sin α))=(b/(2sin β))=(c/(2sin γ))  ⇒ min =(1/2) ≠(1/4)
line3:R=a2sinα=b2sinβ=c2sinγmin=1214
Commented by mahdipoor last updated on 05/Sep/24
thank you , i edited
thankyou,iedited
Commented by Frix last updated on 05/Sep/24
��

Leave a Reply

Your email address will not be published. Required fields are marked *