Question Number 211344 by Nadirhashim last updated on 06/Sep/24
$$\:\:\:{find}\:\int\frac{\boldsymbol{{dx}}}{\boldsymbol{{sin}}^{\mathrm{3}} \left(\boldsymbol{{x}}\right)\:\boldsymbol{{cos}}^{\mathrm{5}} \left(\boldsymbol{{x}}\right)}\:.\boldsymbol{{dx}}\: \\ $$
Answered by Frix last updated on 06/Sep/24
$$\int\frac{{dx}}{\mathrm{cos}^{\mathrm{5}} \:{x}\:\mathrm{sin}^{\mathrm{3}} \:{x}}=\int\frac{\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{x}\right)^{\mathrm{4}} }{\mathrm{tan}^{\mathrm{3}} \:{x}}{dx}\:\overset{\left[{t}=\mathrm{tan}\:{x}\right]} {=} \\ $$$$=\int\frac{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }{{t}^{\mathrm{3}} }{dt}=\int\left({t}^{\mathrm{3}} +\mathrm{3}{t}+\frac{\mathrm{3}}{{t}}+\frac{\mathrm{1}}{{t}^{\mathrm{3}} }\right){dt}= \\ $$$$=\frac{{t}^{\mathrm{4}} }{\mathrm{4}}+\frac{\mathrm{3}{t}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{3ln}\:{t}\:−\frac{\mathrm{1}}{\mathrm{2}{t}^{\mathrm{2}} }=\frac{{t}^{\mathrm{6}} +\mathrm{6}{t}^{\mathrm{4}} −\mathrm{2}}{\mathrm{4}{t}^{\mathrm{2}} }+\mathrm{3ln}\:{t}\:= \\ $$$$=\frac{\mathrm{tan}^{\mathrm{6}} \:{x}\:+\mathrm{6tan}^{\mathrm{4}} \:{x}\:−\mathrm{2}}{\mathrm{4tan}^{\mathrm{2}} \:{x}}+\mathrm{3ln}\:\mid\mathrm{tan}\:{x}\mid\:+{C} \\ $$