F-0-0-F-1-1-F-n-1-F-n-F-n-1-prove-1-89-i-1-10-i-F-i-1- Tinku Tara September 7, 2024 None 0 Comments FacebookTweetPin Question Number 211370 by liuxinnan last updated on 07/Sep/24 F(0)=0F(1)=1F(n+1)=F(n)+F(n−1)prove:189=∑+∞i=110−iF(i−1) Answered by mr W last updated on 07/Sep/24 p2−p−1=0⇒p=1±52⇒F(n)=A(1+52)n+B(1−52)nF(0)=A+B=0⇒B=−AF(1)=A(1+52)−A(1−52)=1⇒A=15⇒F(n)=15[(1+52)n−(1−52)n]∑∞n=110−nF(n−1)=∑∞n=010−(n+1)F(n)=1105∑∞n=0110n[(1+52)n−(1−52)n]=1105∑∞n=0[(1+520)n−(1−520)n]=1105(11−1+520−11−1−520)=25(19+5356−19−5356)=25(25356)=189✓ Commented by liuxinnan last updated on 09/Sep/24 thankssir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-211383Next Next post: soit-le-systeme-d-equatiins-x-y-z-7-x-2-y-2-z-2-9-xyz-5-1-x-1-y-1-z- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.