Menu Close

F-0-0-F-1-1-F-n-1-F-n-F-n-1-prove-1-89-i-1-10-i-F-i-1-




Question Number 211370 by liuxinnan last updated on 07/Sep/24
F(0)=0       F(1)=1    F(n+1)=F(n)+F(n−1)  prove:  (1/(89))=Σ_(i=1) ^(+∞) 10^(−i) F(i−1)
F(0)=0F(1)=1F(n+1)=F(n)+F(n1)prove:189=+i=110iF(i1)
Answered by mr W last updated on 07/Sep/24
p^2 −p−1=0  ⇒p=((1±(√5))/2)  ⇒F(n)=A(((1+(√5))/2))^n +B(((1−(√5))/2))^n   F(0)=A+B=0⇒B=−A  F(1)=A(((1+(√5))/2))−A(((1−(√5))/2))=1 ⇒A=(1/( (√5)))  ⇒F(n)=(1/( (√5)))[(((1+(√5))/2))^n −(((1−(√5))/2))^n ]  Σ_(n=1) ^∞ 10^(−n) F(n−1)  =Σ_(n=0) ^∞ 10^(−(n+1)) F(n)  =(1/(10(√5)))Σ_(n=0) ^∞ (1/(10^n ))[(((1+(√5))/2))^n −(((1−(√5))/2))^n ]  =(1/(10(√5)))Σ_(n=0) ^∞ [(((1+(√5))/(20)))^n −(((1−(√5))/(20)))^n ]  =(1/(10(√5)))((1/(1−((1+(√5))/(20))))−(1/(1−((1−(√5))/(20)))))  =(2/( (√5)))(((19+(√5))/(356))−((19−(√5))/(356)))  =(2/( (√5)))(((2(√5))/(356)))  =(1/(89)) ✓
p2p1=0p=1±52F(n)=A(1+52)n+B(152)nF(0)=A+B=0B=AF(1)=A(1+52)A(152)=1A=15F(n)=15[(1+52)n(152)n]n=110nF(n1)=n=010(n+1)F(n)=1105n=0110n[(1+52)n(152)n]=1105n=0[(1+520)n(1520)n]=1105(111+520111520)=25(19+5356195356)=25(25356)=189
Commented by liuxinnan last updated on 09/Sep/24
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *