Menu Close

Question-211393




Question Number 211393 by BaliramKumar last updated on 08/Sep/24
Commented by BaliramKumar last updated on 08/Sep/24
a^2 −b^2  = 25           a+b = 5  (a−b)(a+b) = 25  (a−b)5 = 25  a−b = 5.........(i)  a+b = 5 ..........(ii)  a = 5        b = 0  a^2 + ab + b^2  = 5^2  + 5×0 + 0^2  = 25  Is  it possible?
a2b2=25a+b=5(ab)(a+b)=25(ab)5=25ab=5(i)a+b=5.(ii)a=5b=0a2+ab+b2=52+5×0+02=25Isitpossible?
Answered by mehdee1342 last updated on 08/Sep/24
(a−b)(a+b)=25⇒a−b=5  (a−b)(a^2 +ab+b^2 )=625  ⇒a^2 +ab+b^2 =125 ✓
(ab)(a+b)=25ab=5(ab)(a2+ab+b2)=625a2+ab+b2=125
Answered by som(math1967) last updated on 08/Sep/24
 a−b=((25)/5)=5   a^3 −b^3 =625   a^2 +ab+b^2 =((625)/5)=125  (b)✓
ab=255=5a3b3=625a2+ab+b2=6255=125(b)
Commented by som(math1967) last updated on 08/Sep/24
 a=5,b=0 then a^3 −b^3 =125  but given a^3 −b^3 =625  ??
a=5,b=0thena3b3=125butgivena3b3=625??
Answered by Frix last updated on 08/Sep/24
We know from Linear Algebra:       3 equations       2 unknowns       ⇒       Solve 2 equations and test the 3^(rd)     Or graph it:  (1) f: b=5−a  (2) g: b=±(√(a^2 −25))  (3) h: b=((a^3 −625))^(1/3)   ⇒ no common intersection.
WeknowfromLinearAlgebra:3equations2unknownsSolve2equationsandtestthe3rdOrgraphit:(1)f:b=5a(2)g:b=±a225(3)h:b=a36253nocommonintersection.

Leave a Reply

Your email address will not be published. Required fields are marked *