Menu Close

Question-211418




Question Number 211418 by peter frank last updated on 08/Sep/24
Answered by Spillover last updated on 09/Sep/24
Answered by Spillover last updated on 10/Sep/24
Particle  A   Horizontal distance, x_A =U_A tcos α  Vertical distance ,y_A =h+U_A tsin α−(1/2)gt^2   Particle  B   Horizontal distance, x_B =2h+U_B tcos β  Vertical distance ,y_B =h+U_B tsin β−(1/2)gt^2   Collision   x_A =U_A tcos α= x_B =2h+U_B tcos β  t=((2h)/(U_A cos α−U_B cos β))  h+U_A tsin α−(1/2)gt^2 =h+U_B tsin β−(1/2)gt^2   h=t(U_B sin B−U_A sin α)  h=((2h(U_B sin B−U_A sin α))/(U_A cos α−U_B cos β)).  U_A cos α−U_B cos β=(U_B sin B−U_A sin α)  (U_A /U_B )=(((cosα+2sin α))/(=(cos β+2sin β)))
$${Particle}\:\:{A}\: \\ $$$${Horizontal}\:{distance},\:{x}_{{A}} ={U}_{{A}} {t}\mathrm{cos}\:\alpha \\ $$$${Vertical}\:{distance}\:,{y}_{{A}} ={h}+{U}_{{A}} {t}\mathrm{sin}\:\alpha−\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} \\ $$$${Particle}\:\:{B}\: \\ $$$${Horizontal}\:{distance},\:{x}_{{B}} =\mathrm{2}{h}+{U}_{{B}} {t}\mathrm{cos}\:\beta \\ $$$${Vertical}\:{distance}\:,{y}_{{B}} ={h}+{U}_{{B}} {t}\mathrm{sin}\:\beta−\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} \\ $$$${Collision} \\ $$$$\:{x}_{{A}} ={U}_{{A}} {t}\mathrm{cos}\:\alpha=\:{x}_{{B}} =\mathrm{2}{h}+{U}_{{B}} {t}\mathrm{cos}\:\beta \\ $$$${t}=\frac{\mathrm{2}{h}}{{U}_{{A}} \mathrm{cos}\:\alpha−{U}_{{B}} \mathrm{cos}\:\beta} \\ $$$${h}+{U}_{{A}} {t}\mathrm{sin}\:\alpha−\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} ={h}+{U}_{{B}} {t}\mathrm{sin}\:\beta−\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} \\ $$$${h}={t}\left({U}_{{B}} \mathrm{sin}\:{B}−{U}_{{A}} \mathrm{sin}\:\alpha\right) \\ $$$${h}=\frac{\mathrm{2}{h}\left({U}_{{B}} \mathrm{sin}\:{B}−{U}_{{A}} \mathrm{sin}\:\alpha\right)}{{U}_{{A}} \mathrm{cos}\:\alpha−{U}_{{B}} \mathrm{cos}\:\beta}. \\ $$$${U}_{{A}} \mathrm{cos}\:\alpha−{U}_{{B}} \mathrm{cos}\:\beta=\left({U}_{{B}} \mathrm{sin}\:{B}−{U}_{{A}} \mathrm{sin}\:\alpha\right) \\ $$$$\frac{{U}_{{A}} }{{U}_{{B}} }=\frac{\left(\mathrm{co}{s}\alpha+\mathrm{2sin}\:\alpha\right)}{=\left(\mathrm{cos}\:\beta+\mathrm{2sin}\:\beta\right)} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *