Menu Close

If-f-x-x-2-g-x-sin-x-Then-find-df-dg-




Question Number 211502 by MathematicalUser2357 last updated on 11/Sep/24
If  { ((f(x)=x^2 )),((g(x)=sin x)) :},  Then find (df/dg).
If{f(x)=x2g(x)=sinx,Thenfinddfdg.
Answered by a.lgnaoui last updated on 11/Sep/24
(df/dg)=(df/dx)×(dx/dg).=  (f^′ /(g′))  f′=2x      g′=cos x  ⇒         (df/dg)=((2x)/(cos x))
dfdg=dfdx×dxdg.=fgf=2xg=cosxdfdg=2xcosx
Commented by MathematicalUser2357 last updated on 12/Sep/24
Can be solved in other way.  (df/dg)=((2x dx)/(cos x dx))=((2x)/(cos x))=2x sec x (No need to transform (1/(cos x)) to sec x)
Canbesolvedinotherway.dfdg=2xdxcosxdx=2xcosx=2xsecx(Noneedtotransform1cosxtosecx)
Answered by MATHEMATICSAM last updated on 11/Sep/24
f(x) = x^2  ⇒ (df/dx) = 2x  g(x) = sinx ⇒ (dg/dx) = cosx  (df/dg) = ((df/dx)/(dg/dx)) = ((2x)/(cosx)) = 2xsecx
f(x)=x2dfdx=2xg(x)=sinxdgdx=cosxdfdg=dfdxdgdx=2xcosx=2xsecx
Commented by MathematicalUser2357 last updated on 12/Sep/24
  🙏🙏🙏
🙏🙏🙏

Leave a Reply

Your email address will not be published. Required fields are marked *