Menu Close

I-0-1-tanh-1-x-2-x-2-dx-




Question Number 211528 by mnjuly1970 last updated on 12/Sep/24
             I = ∫_0 ^( 1) (( tanh^(−1)  (x^2  ))/x^( 2) ) dx= ?
$$ \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{tanh}^{−\mathrm{1}} \:\left({x}^{\mathrm{2}} \:\right)}{{x}^{\:\mathrm{2}} }\:{dx}=\:?\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by Frix last updated on 12/Sep/24
Using Feynman′s Technique  f(α)=∫_0 ^1  ((tanh^(−1)  (αx^2 ))/x^2 )dx  I get I=f(1)=(π/4)+((ln 2)/2)
$$\mathrm{Using}\:\mathrm{Feynman}'\mathrm{s}\:\mathrm{Technique} \\ $$$${f}\left(\alpha\right)=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{tanh}^{−\mathrm{1}} \:\left(\alpha{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx} \\ $$$$\mathrm{I}\:\mathrm{get}\:{I}={f}\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{4}}+\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}} \\ $$
Commented by mnjuly1970 last updated on 12/Sep/24
$$\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *