Question Number 211537 by cherokeesay last updated on 12/Sep/24
Answered by mr W last updated on 12/Sep/24
$$\sqrt{\left({R}−\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} }−\mathrm{2}=\sqrt{{R}^{\mathrm{2}} −\mathrm{6}^{\mathrm{2}} } \\ $$$$\sqrt{{R}^{\mathrm{2}} −\mathrm{4}{R}}=\mathrm{2}+\sqrt{{R}^{\mathrm{2}} −\mathrm{6}^{\mathrm{2}} } \\ $$$$\mathrm{8}−{R}=\sqrt{{R}^{\mathrm{2}} −\mathrm{6}^{\mathrm{2}} } \\ $$$$\Rightarrow{R}=\frac{\mathrm{50}}{\mathrm{8}} \\ $$$${ratio}=\frac{\mathrm{2}^{\mathrm{2}} }{\mathrm{0}.\mathrm{5}{R}^{\mathrm{2}} }=\frac{\mathrm{128}}{\mathrm{625}}=\mathrm{20}.\mathrm{48\%} \\ $$
Commented by mr W last updated on 12/Sep/24
$${thanks}! \\ $$
Answered by A5T last updated on 12/Sep/24
$$\mathrm{6}^{\mathrm{2}} ={x}\left(\mathrm{2}{R}−{x}\right)\Rightarrow\mathrm{2}{R}−{x}=\frac{\mathrm{36}}{{x}}…\left({i}\right) \\ $$$$\left({R}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{2}^{\mathrm{2}} +\left(\mathrm{2}+{R}−{x}\right)^{\mathrm{2}} \Rightarrow\mathrm{2}{R}−{x}=\frac{\mathrm{4}}{{x}−\mathrm{4}}…\left({ii}\right) \\ $$$$\left({i}\right)\&\left({ii}\right)\Rightarrow\frac{\mathrm{4}}{{x}−\mathrm{4}}=\frac{\mathrm{36}}{{x}}\Rightarrow{x}=\mathrm{9}{x}−\mathrm{36}\Rightarrow{x}=\frac{\mathrm{9}}{\mathrm{2}}\Rightarrow{R}=\frac{\mathrm{25}}{\mathrm{4}} \\ $$$$\Rightarrow\frac{\left[{green}\right]}{\left[{white}\right]}=\frac{\mathrm{4}}{\frac{\mathrm{625}}{\mathrm{32}}}=\frac{\mathrm{128}}{\mathrm{625}}=\mathrm{0}.\mathrm{2048} \\ $$
Commented by A5T last updated on 12/Sep/24
Commented by cherokeesay last updated on 12/Sep/24
$${perfect}\:! \\ $$
Answered by a.lgnaoui last updated on 12/Sep/24
$$ \\ $$
Commented by a.lgnaoui last updated on 12/Sep/24