Menu Close

if-lim-x-0-f-x-lim-x-0-g-x-0-when-do-not-use-f-x-to-replace-g-x-




Question Number 211567 by liuxinnan last updated on 13/Sep/24
if lim_(x→0) f(x)=lim_(x→0) g(x)=0  when do not use f(x) to  replace g(x)
$${if}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{f}\left({x}\right)=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{g}\left({x}\right)=\mathrm{0} \\ $$$${when}\:{do}\:{not}\:{use}\:{f}\left({x}\right)\:{to}\:\:{replace}\:{g}\left({x}\right)\:\:\: \\ $$
Commented by MrGaster last updated on 13/Sep/24
1.whenlim_(x→0) f(x)=lim_(x→0) g(x)=0   cases where you cannot replacef(x) withg(x)  include but are not limitedo  t:  1.f(x)andg(x)are not equivalent.  infinitesimals  2.The specific form of thes  function is unknown or complex.  3.The replacement would affecte  th results of nonlinearo  combinatins.  4.to indeterminate forms inl  multipication and divisiont  operaions (such as 0/0).
$$\mathrm{1}.\mathrm{when}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{f}\left({x}\right)=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{g}\left({x}\right)=\mathrm{0} \\ $$$$\:\mathrm{cases}\:\mathrm{where}\:\mathrm{you}\:\mathrm{cannot}\:\mathrm{replace}{f}\left({x}\right)\:\mathrm{with}{g}\left({x}\right)\:\:\mathrm{include}\:\mathrm{but}\:\mathrm{are}\:\mathrm{not}\:\mathrm{limitedo} \\ $$$$\mathrm{t}: \\ $$$$\mathrm{1}.\boldsymbol{\mathrm{f}}\left(\boldsymbol{{x}}\right)\boldsymbol{\mathrm{and}}{g}\left({x}\right)\mathrm{are}\:\mathrm{not}\:\mathrm{equivalent}. \\ $$$$\mathrm{infinitesimals} \\ $$$$\mathrm{2}.\mathrm{The}\:\mathrm{specific}\:\mathrm{form}\:\mathrm{of}\:\mathrm{thes} \\ $$$$\mathrm{function}\:\mathrm{is}\:\mathrm{unknown}\:\mathrm{or}\:\mathrm{complex}. \\ $$$$\mathrm{3}.\mathrm{The}\:\mathrm{replacement}\:\mathrm{would}\:\mathrm{affecte} \\ $$$$\mathrm{th}\:\mathrm{results}\:\mathrm{of}\:\mathrm{nonlinearo} \\ $$$$\mathrm{combinatins}. \\ $$$$\mathrm{4}.\mathrm{to}\:\mathrm{indeterminate}\:\mathrm{forms}\:\mathrm{inl} \\ $$$$\mathrm{multipication}\:\mathrm{and}\:\mathrm{divisiont} \\ $$$$\mathrm{operaions}\:\left(\mathrm{such}\:\mathrm{as}\:\mathrm{0}/\mathrm{0}\right). \\ $$
Commented by liuxinnan last updated on 13/Sep/24
thanks
$${thanks}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *