Menu Close

1-Given-a-regular-tetrahedron-ABCD-with-vertices-A-0-0-0-B-a-0-0-C-0-a-0-and-D-0-0-a-Calculate-the-volume-V-and-the-surface-area-S-of-this-tetrahedron-




Question Number 211603 by MrGaster last updated on 14/Sep/24
1.Given a regular tetrahedron ABCD  with vertices A(0,0,0)B(a,0,0),  C(0,a,0),and D(0,0,a).Calculate the   volume V  and the surface area S of  this tetrahedron.
1.GivenaregulartetrahedronABCDwithverticesA(0,0,0)B(a,0,0),C(0,a,0),andD(0,0,a).CalculatethevolumeVandthesurfaceareaSofthistetrahedron.
Answered by BHOOPENDRA last updated on 14/Sep/24
Answered by BHOOPENDRA last updated on 15/Sep/24
The volume of a tetrahedron with   vertices A,B,C,&D is given formula  V=(1/6)∣A.(B×C)∣  A(0,0,0) ,B(a,0,0) ,C(0,a,0)D(0,0,a)    V=(1/6) determinant (((0  0   0 )),((a  0   0   )),((0   a   0)),((0    0   a)))=(1/6)∣a^3 ∣  V=(1/6)a^3   Surface area =(3×area right angle triangle)+equiletral triangle area                                =3×(1/2)a^2 +((√3)/4) ((√2) a)^2                                   = (((3+(√3))a^2 )/( 2))
ThevolumeofatetrahedronwithverticesA,B,C,&DisgivenformulaV=16A.(B×C)A(0,0,0),B(a,0,0),C(0,a,0)D(0,0,a)V=16|000a000a000a|=16a3V=16a3Surfacearea=(3×arearightangletriangle)+equiletraltrianglearea=3×12a2+34(2a)2=(3+3)a22
Commented by BHOOPENDRA last updated on 14/Sep/24
It can be also solved by using   integration
Itcanbealsosolvedbyusingintegration
Answered by mr W last updated on 15/Sep/24
V=((base area×height)/3)=((0.5 a^2 ×a)/3)=(a^3 /6)  S=3×(a^2 /2)+(((√3)((√2)a)^2 )/4)=(((3+(√3))a^2 )/2)
V=basearea×height3=0.5a2×a3=a36S=3×a22+3(2a)24=(3+3)a22
Commented by BHOOPENDRA last updated on 15/Sep/24
Thanks Mr.W i have corrected
ThanksMr.Wihavecorrected
Commented by mr W last updated on 15/Sep/24
��

Leave a Reply

Your email address will not be published. Required fields are marked *